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Using a set of hyperbranched polystyrenes with different overall molar masses but a uniform sub-
chain length or a similar overall molar mass but different subchain lengths, we studied their sizes
and hydrodynamic behaviors in toluene (a good solvent) at T = 25 ◦C by combining experimental
(laser light scattering (LLS) and viscometry) and theoretical methods based on a partially perme-
able sphere model. Our results show that both the average radii of gyration (〈Rg〉) and hydrodynamic
radius (〈Rh〉) are scaled to the weight-average molar mass (Mw) as 〈Rg〉 ∼ 〈Rh〉 ∼ Mw

γ Mw,s
ϕ , with

γ = 0.47 ± 0.01 and ϕ = 0.10 ± 0.01; and their intrinsic viscosity ([η]) quantitatively follow the
Mark-Houwink-Sakurada (MHS) equation as [η] = KηMw

νMw,s
μ with Kη = 2.26 × 10−5, ν = 0.39

± 0.01, and μ = 0.31 ± 0.01, revealing that these model chains with long subchains are indeed frac-
tal objects. Further, our theoretical and experimental results broadly agree with each other besides
a slight deviation from the MHS equation for short subchains, similar to dendrimers, presumably
due to the multi-body hydrodynamic interaction. Moreover, we also find that the average viscometric
radius (〈Rη〉) determined from intrinsic viscosity is slightly smaller than 〈Rh〉 measured in dynamic
LLS and their ratio (〈Rη〉/〈Rh〉) roughly remains 0.95 ± 0.05, reflecting that linear polymer chains
are more draining with a smaller 〈Rh〉 than their hyperbranched counterparts for a given intrinsic
viscosity. Our current study of the “defect-free” hyperbranched polymer chains offers a standard
model for further theoretical investigation of hydrodynamic behaviors of hyperbranched polymers
and other complicated architectures, in a remaining unexploited research field of polymer science.
© 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4795577]

I. INTRODUCTION

In comparison with regular hyperbranched molecules
made of short segments between two neighboring branching
points, hyperbranched polymers with long linear subchains
often lead to materials with some special mechanical proper-
ties, such as a higher level of toughness and stronger impact
strength. Therefore, much experimental and theoretical effort
has been spent to prepare hyperbranched polymers with dif-
ferent linear subchains to adjust their mechanical properties as
well as to investigate their structure-property relationship.1–4

Whenever addressing the structure-property relationships
of a polymer, its rheological behavior must be one of the first
considerations, more specifically, its intrinsic viscosity [η],
also called the Staudinger index, because it is often used in
industry as a quality and process control and in research as a
structural characterizing parameter. It has been known that5

[η] = �

(
R3

g

M

)
, (1)

where � is the Flory hydrodynamic constant, Rg is the root-
mean-square radius of gyration, and M is the molar mass of

a)Authors to whom correspondence should be addressed. Electronic
addresses: llw@mail.ustc.edu.cn and yylu@ciac.jl.cn.

polymer. [η] is inversely proportional to the chain density in a
given solvent. � is roughly related to the chain draining in so-
lution, namely, a higher degree of draining leads to a smaller
�. Therefore, a linear chain should have a smaller � than its
hyperbranched counterpart. However, it remains a challenge
to properly and quantitatively describe the draining nature of
a hyperbranched chain in good solvents. Generally, we know
that Rg is scaled to M so that Eq. (1) is written as in the Mark-
Houwink-Sakurada (MHS) equation5

[η] = KMα, (2)

where K and α are two constants for a given type of poly-
mer solutions. Their values depend on the solvent quality and
chain topology. Specifically, for linear chains, α = 0.7 ∼ 1.0
in good solvents; and α = 0.5 under the theta condition.6–8

However, Eqs. (1) and (2) completely fail to predict how
[η] depends on M for dendrimers,9 partially because of an im-
proper assumption that the hydrodynamic radius (Rh) is pro-
portional to the radius of gyration (Rg); namely, dentritic poly-
mer chains are assumed to be fractal objects. In contrast, a
previous theoretical study revealed that, for dendritic chains,
such a proportionality between Rh and Rg is invalid and there
exists a maximum in the plot of [η] versus M, i.e., [η] first
increases with the number of generation (G) and then de-
creases after G reaches a certain value.10 Such an anomalous
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behavior has not been described by the Fox-Flory formula11

and the existing Zimm or Rouse arguments for a long time.
Until recently, An et al.12 developed a two-zone model for
dendrimers after considering the radial segmental density pro-
file and quantitatively explained those existing experimental
results. Further, by combining Debye’s theory for free drain-
ing polymer chain with Einstein’s theory for hard spheres,
they presented a general theory for the intrinsic viscosity of
polymers with any morphology on the basis of a partially per-
meable sphere model.13 Such predictions agree well with the
experimental results in the literature, ranging from linear to
star and to dendritic chains.

Note that randomly hyperbranched chains are even more
complicated than dendrimers. It has not been completely
clear (1) whether hyperbranched chains with different sub-
chain lengths follow Eq. (2), i.e., whether they are frac-
tal objects;14, 15 (2) whether those previously reported M-
dependent intrinsic viscosities from an on-line combination
of the size exclusion chromatograph (SEC) with viscosity and
multi-angle laser light scattering (MALLS) detectors actually
captured its structure-property relationship;14, 16 and (3) how
the subchain length and branching degree of hyperbranched
chains affect their intrinsic viscosity ([η]). To the best of our
knowledge, they have not been theoretically or experimentally
addressed so far.

In order to answer these questions, one has to first pre-
pare a set of hyperbranched polymer chains with a control-
lable and adjustable structure, such as a similar overall molar
mass but different subchain lengths and an identical subchain
length but different overall molar masses, which is rather dif-
ficult in polymer synthesis, if not impossible. This explains
why literature search shows only few past structure-property
studies of non-ideal hyperbranched polymers even though the
structure-property relationships are vitally important in their
developments and applications. Only very recently, using the
“click” chemistry and a specially designed seesaw-type linear
macromonomer B∼∼A∼∼B, where A and B denote alkyne
and azide groups, respectively; and ∼∼, a polystyrene (PSt)
chain, we were able to prepare hyperbranched polystyrenes
with long and uniform subchains,17, 18 as schematically shown
in Scheme 1.

        linear  
macromonomer 

SCHEME 1. Schematic of structure of a hyperbranched polymer with long
and uniform subchains prepared from seesaw-type macromonomers via click
chemistry.

Each resultant hyperbranched polymer can be further
fractionated into a set of very narrowly distributed chains
with different overall molar masses but an identical subchain
length that is pre-designed from the macromonomer prepa-
ration. It should be stated and noted that this approach is
fundamentally different from previously used “A∼∼B2” and
“A∼∼A + B3” methods that inevitably result in a broad
distribution in subchain lengths due to some unreacted B-
groups;4, 7 namely, each unreacted B-group leads to a sub-
chain that is one “∼∼” longer. Such a broad subchain-length
distribution in a given hyperbranched polymer makes the cor-
relation between polymer structure and properties difficult
and less accurate or even meaningless, depending on how sen-
sitive a property is related to the subchain length.

It should be pointed out that originally we planned to in-
clude part of the scaling laws as part of our previous study
of the translocation of these hyperbranched chains through a
small cylindrical pore (20 nm).19 However, after completing
the intrinsic viscoelastic measurements and the novel theoret-
ical calculation, we found that it is inconsistent and distractive
to put those studies of the scaling laws and the ultrafiltration
together. This is why we separate them into two papers. In the
current study, we have seriously answered those remaining
questions and found that the MHS equation is also valid for
hyperbranched chains with long subchains; while the devia-
tion from the MHS equation for shorter subchains is presum-
ably attributed to the strong excluded volume effect as well as
the multi-body hydrodynamic interaction.

II. EXPERIMENTAL

A. Materials

Scheme 1 schematically shows the structure of our hyper-
branched chains with long and uniform subchains prepared
from seesaw-type macromonomers via click chemistry. The
synthetic detail was described before.17, 18 Using the precipi-
tation fractionation, we obtained four sets of hyperbranched
chains with different subchain lengths and overall molar
masses. The details of the fractionation was also described
before.17, 18 The overall weight-average molar masses and
subchain lengths of these hyperbranched polystyrene chains
are listed in Table I. Toluene from Acros company (99.8+%,
for analysis) was used as solvent in all the experiments de-
scribed hereafter without further purification.

B. Laser light scattering

A commercial LLS spectrometer (ALV/DLS/SLS-
5022F) equipped with a multi-τ digital time correlator
(ALV5000) and a cylindrical 22 mW UNIPHASE He-Ne
laser (λ0 = 632.8 nm) as the light source was used. In
static LLS,20, 21 the angular dependence of the absolute excess
time-average scattering intensity, known as the Rayleigh ratio
RVV(q), can lead to the weight-average molar mass (Mw), the
root-mean-square gyration radius 〈R2

g〉1/2
z (or simply written

as 〈Rg〉) and the second virial coefficient A2 by using

KC

RV V (q)
∼= 1

Mw

(
1 + 1

3

〈
R2

g

〉
Z
q2

)
+ 2A2C, (3)
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TABLE I. Molecular parameters of hyperbranched polystyrenes in toluene.

Sample Mw (g/mol) μ2 (〈D〉2) Mw/Mn [η] (l/g) kh

PSt-73k 1.7 × 107 0.06 1.24 3.6 × 10−1 0.15
7.2 × 106 0.10 1.40 2.9 × 10−1 0.23
1.6 × 106 0.04 1.16 1.7 × 10−1 0.17
8.4 × 105 0.05 1.20 1.2 × 10−1 0.69
6.4 × 105 0.03 1.12 1.1 × 10−1 0.50
3.9 × 105 0.04 1.16 9.2 × 10−2 0.43

PSt-21k 3.0 × 107 0.09 1.36 3.0 × 10−1 0.14
1.1 × 107 0.06 1.24 2.2 × 10−1 0.23
4.5 × 106 0.05 1.20 1.7 × 10−1 0.62
2.7 × 106 0.06 1.24 1.3 × 10−1 0.97
1.6 × 106 0.03 1.12 1.0 × 10−1 0.72
8.7 × 105 0.04 1.16 8.3 × 10−2 0.60
6.2 × 105 0.03 1.12 7.1 × 10−2 0.57
4.8 × 105 0.03 1.12 5.9 × 10−2 0.64
2.6 × 105 0.04 1.16 5.4 × 10−2 0.54

PSt-8.8k 5.7 × 106 0.02 1.08 1.4 × 10−1 0.34
2.8 × 106 0.04 1.16 1.1 × 10−1 0.35
1.4 × 106 0.04 1.16 7.9 × 10−2 0.67
7.2 × 105 0.03 1.12 5.8 × 10−2 0.74
3.0 × 105 0.04 1.16 4.0 × 10−2 0.89

PSt-3.3k 4.8 × 10 0.08 1.32 4.3 × 10−2 . . .
1.6 × 105 0.03 1.12 2.9 × 10−2 . . .

where K = 4π2(dn/dC)2/(NAλ0
4) and q = (4π /λ0)sin(θ /2)

with C, dn/dC, NA, and λ0 being concentration of the poly-
mer solution, the specific refractive index increment, the Avo-
gadro’s number, and the wavelength of light in a vacuum,
respectively. The extrapolation of RVV(q) to q → 0 and C
→ 0 leads to Mw. The plot of [KC/RVV(q)]C→0 vs q2 and
[KC/RVV(q)]q→0 vs C leads to 〈R2

g〉z and A2, respectively. In
a very dilute solution, the term of 2A2C is ignored. For our
branched and ultra-large hyperbranched chains, q〈Rg〉 > 1, so
that the Berry plot was used.

In dynamic LLS,22 the Laplace inversion of each mea-
sured intensity-intensity time correlation function G(2)(q,t) in
the self-beating mode can lead to a line-width distribution
G(�), where q is the scattering vector. For pure diffusive re-
laxation, � is related to the translational diffusion coefficient
D in dilute solutions by (�/q2)q→0,C→0 → D, so that G(�)
can be converted into a transitional diffusion coefficient distri-
bution G(D) or further to a hydrodynamic radius distribution
f(Rh) via the Stokes–Einstein equation, Rh = (kBT/6πη0)/D,
where kB, T, and η0 are the Boltzmann constant, the abso-
lute temperature, and the solvent viscosity, respectively. In the
current study, G(2)(q,t)s were analyzed by both the Cumulants
and CONTIN analysis.

C. Viscosity measurement

Flow times of polymer solutions were measured using an
Ubbelohde capillary viscometer. Relative viscosity (ηr) was
obtained from the ratio of the flow times of a solution and the
solvent. Before each measurement, a solution in the viscome-
ter was sealed and allowed to equilibrate with a thermostatted
water tank for at least 20 min. The temperature fluctuation of
the water tank was smaller than 0.1 ◦C. All samples used for

flow time measurements were clarified by filtration through
Millipore 0.45 μm polytetrafluoroethylene filters. Each poly-
mer solution was measured for three times so that the relative
error was less than 0.2%.

III. RESULTS AND DISCUSSION

In this study, the copper(I)-catalyzed Huisgen [3+2]
dipolar cycloaddition “click chemistry” was adopted as a key
ingredient to construct our hyperbranched structure due to
its merit of quantify, functional group tolerance, and high
efficiency.23–27 Therefore, via “click” chemistry and precip-
itation fractionation method, we have obtained a series of hy-
perbranched polystyrenes, and the corresponding molecular
parameters of these hyperbranched chains used in the cur-
rent study are summarized in Table I, where the polydisper-
sity index (Mw/Mn) was roughly estimated from the relative
line-width (μ2/〈D〉2) measured from dynamic LLS by using
Mw/Mn ≈ (1 + 4μ2/〈D〉2), where μ2 = ∫ ∞

0 G(D)(D − 〈D〉)2

dD and D is the diffusion coefficient. To facilitate discussion
hereafter, we denote each hyperbranched polystyrene by its
macromonomer’s weight-average molar mass, e.g., PSt-8.8k
shows that it was made of linear polystyrene macromonomer
with a molar mass of Mw = 8.8 kg/mol.

First, we measured their molar masses dependent average
diffusion coefficients (〈D〉) by using a combination of static
and dynamic laser light scattering. Figure 1 shows that af-
ter normalized by the weight-average molar mass (Mw,s) of
the subchain, the double logarithmical plots of 〈D〉 versus
the weight-average molar mass of the entire hyperbranched
chains (Mw) for different hyperbranched chains unquestion-
ably collapse into a single line, which clearly indicates that
〈D〉 is scaled to both Mw and Mw,s. Moreover, a much smaller
absolute value of the exponent of Mw,s (0.1) indicate the dif-
fusion behavior of hyperbranched chains is mainly dominated
by the overall molar mass (Mw) but not the subchain length
(Mw,s). To our knowledge, such a scaling has not been well
established before even though many people have tried in the
past.

Further, Figure 2 shows the average size (〈R〉) of the hy-
perbranched polystyrene chains is scaled to the overall degree
of polymerization (Nt), where Nt = Mw/Mo with Mo is the

10
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7

10
-7

10
-6

PSt-73k
PSt-21k
PSt-8.8k
PSt-3.3k

<D> (cm2/s) = 2.82×10-4Mw
-0.48Mw,s

-0.10

<
D

>
⋅M

w
,s

0.
1

M
w

/ (g/mol)

FIG. 1. Weight-average molar mass (Mw) dependence of average transla-
tional diffusion coefficient (〈D〉) of hyperbranched polystyrenes with differ-
ent subchain lengths in toluene at T = 25 ◦C, where 〈D〉 has a unit of “cm2/s”
and both Mw,s and Mw are expressed as “g/mol.”
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FIG. 2. Overall degrees of polymerization (Nt) dependence of normalized
average radius of gyration 〈Rg〉 and average hydrodynamic radius 〈Rh〉 of
hyperbranched polystyrene chains with different uniform subchain lengths in
toluene at T = 25 ◦C.

molar mass of styrene; 〈Rh〉 is calculated from 〈D〉 by using
the Stokes–Einstein equation; 〈Rg〉 is measured using static
LLS; and 〈R〉 is normalized by the polymerization degree of
the subchain on the basis of the theoretical prediction;28–30

namely, 〈Rg〉 of hyperbranched polymer chains in good sol-
vents is scaled to the polymerization degrees of the overall hy-
perbranched chain (Nt) and the subchain (Nb) as 〈R〉 ∼ Nt

αNb
β

with α = 1/2 and β = 1/10. Indeed, the average size of the
hyperbranched polystyrenes with different subchain lengths is
scaled to the overall polymerization degree but the scaling ex-
ponent (α), respectively, for 〈Rg〉 and 〈Rh〉, is 0.46 ± 0.01 and
0.48 ± 0.01, smaller than the predicted 1/2. On the other hand,
we also attained the scaling exponent β by fixing the overall
molar mass of the hyperbranched polystyrenes and plotting
〈R〉 versus Nb (not shown). We found that β is 0.11 ± 0.01 for
〈Rg〉 and 0.09 ± 0.01 for 〈Rh〉, supporting the normalization
used. Again, to our knowledge, such scaling laws have not
been seriously established before even though much effort has
been spent before. These scaling plots indicate that the hyper-
branched chains with long subchains are self-similar, which
leads us to believe that hyperbranched polymer chains should
also obey the MHS equation.

To verify it, we directly measured their concentration
dependence of viscosity in toluene at T = 25.0 ± 0.1 ◦C
by a conventional flow viscometer. It should be empha-
sized that the most used concentrated solution was dilute
enough, a region far away from the semi-dilute region, i.e.,
C 	 C∗ (the overlap concentration), to keep the relative vis-
cosity below 1.30. Figure 3 shows typical plots of the con-
centration dependence of specific viscosity ηsp/C of hyper-
branched polystyrenes made of one macromonomer, where
ηsp is defined as ηr − 1. The intercept and slope of each fitting
line, respectively, lead to the intrinsic viscosities ([η]) and the
Huggins constant (kh) of a given hyperbranched polystyrene
on the basis of ηsp/C = [η] + kh[η]2C. The values of [η] and
kh of all the hyperbranched polystyrenes studied are also sum-
marized in Table I. Note that for some samples we did not
have a sufficient quality to make a large number of solutions
so that their kh values were estimated with some uncertainty,
which scarcely affects those measured intrinsic viscosity ([η])
because polymer solutions used were sufficiently dilute.

0 1 2 3 4 5
0.0

0.1

0.2

(η
sp

/C
)

/(
L

/g
)

C / (g/L)

FIG. 3. Typical plots of polymer concentration dependence of reduced
specific viscosity (ηsp/C) of hyperbranched polystyrenes made of one
macromonomer (PSt-8.8k) in toluene at T = 25 ◦C.

Theoretically, we calculate the intrinsic viscosity of these
hyperbranched polystyrene chains using the theory for the in-
trinsic viscosity of polymers proposed by us recently based on
the partially permeable sphere model.13 By combining Ein-
stein’s theory for hard spheres31 with Debye’s theory for free
draining polymer chains,32 our theory, by introducing two
phenomenological functions, a drainage function and a drag
function, both of which can be determined from the density
profile, provides a simple and convenient method that cir-
cumvents the explicit treatment of the complex, multi-body
hydrodynamic interactions in these systems while capturing
their key effects. The parameter choice was detailed before.13

Figure 4(a) shows our experimental and theoretical results of
how [η] depends on both Mw and Mw,s for hyperbranched
polystyrene chains with different subchain lengths, indicat-
ing that hyperbranched chains obey the MHS equation just
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0.39Mw,s

0.31

[η
]/

M
w

,s

0.
31

M
w

/ (g/mol)

10
-1

10
0

Experimental Theoretical

PSt-73k
PSt-21k
PSt-8.8k
PSt-3.3k
PSt-2.2k

0.39 + 0.02

0.76 + 0.02

[η
]

/(
L

/g
)

linear chain

(b)

(a)

FIG. 4. Weight-average molar mass (Mw) dependence of (a) non-normalized
and (b) normalized intrinsic viscosity ([η]) of hyperbranched polystyrenes
with different subchain lengths in toluene at T = 25 ◦C, where the dashed line
for linear chains is from the literature.8 Theoretical results were calculated
using our partially permeable sphere model with a density profile accurately
calculated from Monte Carlo simulation.
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like their linear counterpart, i.e., they are fractal objects. Ap-
parently, the data points spread over a wide range but with
a similar slope of 0.39. Also note that a slight deviation from
the scaling occurs when Mw,s is less than ∼103 g/mol, presum-
ably due to the emergence of a strong effect of the excluded
volume.

Furthermore, Figure 4(b) clearly reveals that these scat-
tered data in Figure 4(a) collapse into a single master line
when [η] is normalized by the corresponding subchain length;
namely, [η] is scaled to both Mw and Mw,s as

[η] = KηM
ν
wMμ

w,s, (4)

where ν = 0.39 ± 0.01 and μ = 0.31 ± 0.01; and Kη

= 2.26 × 10−5 l/g. Up to now, we have experimentally and
theoretically revealed that both Eqs. (1) and (2) are also valid
for hyperbranched chains with long and uniform subchains
in a good solvent, clearly indicating that these hyperbranched
chains are fractal objects; in contrast, a slight deviation from
the scalings occurs for hyperbranched chains with a much
shorter subchain length, because of the excluded volume ef-
fect. It should be emphasized that the fractal behavior of hy-
perbranched chains have been previously well theoretically
discussed via the branching theory33–35 and further experi-
mentally verified by the scattering experiments finished by
Burchard’s group;36–38 however, the subchain lengths in pre-
vious studies were extremely short and unchangeable; there-
fore, their adopted AB2 monomer is actually different with
what we mentioned. It is also interesting to note that the two
scaling exponents between [η] and both Mw and Mw,s are not
far away from each other. The literature values of the mea-
sured scaling exponent between [η] and Mw is very widely
spread over a range 0.3–0.5 for hyperbranched polymers pre-
pared by conventional methods with a broad distribution of
subchain length. With no exception, all of previous exper-
iments used the on-line SEC-viscosity-MALLS to measure
both [η] and Mw.15, 16, 39 Unfortunately, it had been repeatedly
overlooked that SEC separates polymer chains by their hy-
drodynamic volumes, not by their molar masses. Namely, for
nonlinear polymer chains, each retentive fraction in principle
contains polymer chains with a similar hydrodynamic volume
but not necessarily with a similar molar mass. Theoretically,
Eqs. (1) and (2) require that each fraction contains polymer
chains with a similar molar mass, not a similar size. Presum-
ably, it is due to difficulties and limitations in both the sample
preparation and experimental methods so that less attention
has been paid to this very important point so far.

In contrast, all the hyperbranched polystyrenes used in
the current study were fractionated by precipitation, i.e., ac-
cording to the interaction parameter χM, where M is the over-
all molar mass of the chain and χ is the Flory-Huggins pa-
rameter, a constant, independent on M for a polymer in a
given solvent. Therefore, hyperbranched chains in each frac-
tion used here have a similar molar mass. In comparison with
our results, some of previous computer simulations40, 41 sug-
gested that the molar mass dependence of intrinsic viscosity
of irregular hyperbranched chains deviates from Eq. (2) be-
cause the segment density distribution is different from those
predicted by de Gennes and Hervet. We will come back to this
point later.
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FIG. 5. Weight-average molar mass (Mw) dependence of ratio of two
hydrodynamics-related radii (average viscometric radius, 〈Rη〉, and average
hydrodynamic radius, 〈Rh〉) of hyperbranched polystyrenes with different
subchain lengths in toluene at T = 25 ◦C.

Previously, we have already used static LLS to reveal that
for hyperbranched polystyrene chains with long and uniform
subchains,17 Rg ∼ Rh ∼ M

γ
wM

ϕ
w,s with γ = 0.47 ± 0.01 and

ϕ = 0.10 ± 0.01. A combination of Eqs. (1) and (5) leads to

[η] ∼ M3γ−1
w M3ϕ

w,s. (5)

A comparison of Eqs. (4) and (5) leads to ν = 3γ − 1 and
μ = 3ϕ. Inputting our experimentally determined values of
γ and ϕ, we have ν = 0.41 ± 0.01 and μ = 0.30 ± 0.01,
fairly close to those directly measured values (0.39 ± 0.01 and
0.31 ± 0.01) from the viscosity measurements, which cross-
examines and validates our previous LLS data and current vis-
cosity results. It is worth noting that in comparison with LLS,
viscosity is more sensitive and much easier to be measured
in characterizing the effect of chain topology and conforma-
tion, such as the branching degree, because LLS measures the
hydrodynamic size, while viscosity detects the hydrodynamic
volume that is a cubic of the chain size.

When treating each hyperbranched chain as a suspending
hard sphere and taking � = 2.5,42 we can rewrite Eq. (1) as

[η] = 10π

3
NA

(
R3

η

Mw

)
or Rη =

(
3[η]Mw

10πNA

)1/3

, (6)

where Rη and NA are the average viscometric radius and
the Avogadro’s number, respectively. Therefore, we can con-
vert each measured intrinsic viscosity [η] into a viscomet-
ric radius Rη so that we can directly compare two average
hydrodynamics-related radii (〈Rh〉 and 〈Rη〉), as shown in
Figure 5. It reveals that 〈Rη〉 is fairly close to 〈Rh〉 and their
ratio (〈Rη〉/〈Rh〉) is 0.95 ± 0.05, smaller than ∼1.2 for linear
chains in good solvents.6, 43 Such a difference illustrates dif-
ferent structures and solution behaviors of linear and branched
chains in good solvents, presumably reflecting that a lin-
ear chain is more draining, i.e., its hydrodynamic radius is
smaller, than its branch counterpart for a given intrinsic
viscosity.

IV. CONCLUSION

The current LLS and viscosity results of a set of hyper-
branched chains with different overall molar masses but a
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uniform subchain length or with a similar overall molar mass
but different subchain lengths have revealed that sizes of hy-
perbranched polystyrenes with long and uniform subchains in
a good solvent (toluene, at T = 25 ◦C) are scaled to the over-
all weight-average molar masses (Mw) and the subchain molar
masses (Mw,s) as Rg ∼ Rh ∼ M

γ
wM

ϕ
w,s with γ = 0.47 ± 0.01

and ϕ = 0.10 ± 0.01; and their intrinsic viscosity quanti-
tatively follows the MHS equation, i.e., [η] = KηMw

νMw,s
μ

with Kη = 2.26 × 10−5, ν = 0.39 ± 0.01, and μ = 0.31
± 0.01, indicating that they behave like fractal objects, simi-
lar to linear chains, in spite of their different subchain lengths.
Our theoretical calculation on the basis of a partially perme-
able sphere model confirmed these experimental results and
the fractal nature of hyperbranched polymers with long and
uniform subchains. Our results also reveal a deviation from
the MHS equation when the subchain length becomes suffi-
ciently short, presumably due to a stronger effect of the ex-
clude volume and the multi-body hydrodynamic interaction.
Moreover, the average viscometric radius 〈Rη〉 determined
from intrinsic viscosity is slightly smaller than the average
hydrodynamic radius 〈Rh〉 measured in dynamic LLS with a
ratio of 〈Rη〉/〈Rh〉 = 0.95 ± 0.05, smaller than 1.2 for linear
chains, reflecting that linear chains are more draining with
a smaller 〈Rh〉 than their hyperbranched counterparts for a
given intrinsic viscosity. Our results also point to an over-
looked problem; namely, the powerful on-line SEC-viscosity-
MALLS method is not suitable to quantitatively study the mo-
lar mass dependence of solution behaviors of polymer chains
with a nonlinear topology because SEC separates them by
their hydrodynamic volumes instead of their molar masses.
For serious and quantitative studies, one has no choice but
to use better chemistry and a conventional time-consuming
precipitation fractionation method. Furthermore, other char-
acterization methods should be used to verify the universal-
ity of our findings in the future work. Nevertheless, our cur-
rent study of the “defect-free” hyperbranched polystyrenes
has clarified some of previous questions about thermody-
namic and hydrodynamic behaviors of hyperbranched chains
in good solvents and also offers a standard model for further
theoretical investigation of hydrodynamic behaviors of poly-
mer chains with other more complicated topologies.
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