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1.1 Introduction

When a monochromatic, coherent beam of light is incident on a dilute solution
of macromolecules or suspension of colloidal particles and the solvent refractive
index is different from that of the solute (macromolecules or colloidal particles),
the incident light is scattered by each illuminated macromolecule or colloidal par-
ticle in all directions. The scattered light waves from different macromolecules or
particles mutually interfere, or combine, at a distant, fast detector (e.g., a photo-
multiplier tube) and produce a net scattered intensity /(¢) or photon counts n(¢) that
are not uniform on the scattering (or detection) planc. If all the macromolecules
or particles are stationary, the scattered light intensity at each direction would be a
constant (i.c., independent of time). However, in reality, all the scatterers in solu-
tion are undergoing constant Brownian motions, and this fact leads to fluctuations
of the scattered intensity pattern on the detection plane and the fluctuations in 1(z)
if the detection area is sufficiently small. The fluctuation rates can be related to
different relaxation processes such as translational and rotational diffusions as well
as internal motions of the macromolecules. The faster the relaxation process, the
faster the intensity fluctuations will be.
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In a broad definition, laser light scattering (LLS) could be classified as inelastic
(e.g., Raman, fluorescence, and phosphorescence) and elastic (no absorption) light
scattering. However, in polymer and colloid science, light scattering is normally
referred to in terms of static (elastic) or dynamic (quasi-elastic) measurements,
or both, of the scattered light [1]. Static LLS as a classic and absolute analytical
method measures the time-average scattered intensity, and it has been widely used
to characterize synthetic and natural macromolecules [2]. On the other hand, dy-
namic LLS measures the intensity fluctuations instead of the average light intensity
(this is where the word dynamic comes from), and its essence may be explained as
follows: When the incident light is scattered by a moving macromolecule or par-
ticle, the detected frequency of the scattered light will be slightly higher or lower
than that of the original incident light owing to the Doppler effect, depending on
whether the particle moves towards or away from the detector. Thus, the frequency
distribution of the scattered light is slightly broader than that of the incident light.
This is why dynamic LLS is also called quasi-elastic light scattering (QELS). The
frequency broadening (*103-107 Hz) is so small in comparison with the incident
light frequency (*10'° Hz) that it is very difficult, if not impossible, to detect
the broadening directly in the frequency domain. However, it can be effectively
recorded in the time domain via a time correlation function. Thus, dynamic light
scattering is sometimes known as intensity fluctuation spectroscopy. If we use
digital photons to measure the intensity fluctuations, the term photon correlation
spectroscopy (PCS) is then used to refer to the technique described here.

In the last two decades, thanks to the advance of stable laser, ultrafast electron-
ics and personal computers, LLS, especially dynamic LLS, has evolved from a
very special instrument for physicists and physical chemists to a routine analytical
tool in polymer laboratories or even to a daily quality-control device in produc-
tion lines. Commercially available research-grade LLS instruments are normally
capable of making static and dynamic measurements simultaneously for studies of
colloidal particles in suspension or macromolecules in solution as well as in gels
and viscous media.

1.1.1 ENERGY TRANSFER VERSUS MOMENTUM TRANSFER

Considering the interaction of light (an electromagnetic radiation) with matter, we
can describe it in terms of two fundamental quantities: the momentum transfer
(hK) and the energy transfer (AAw) obeying the conservation equations

KK = h(k; — k,) (D
hAw = h(w; — wy) (2)
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Figure 1.1 Scattering geometry. /;, I, and I, are, respectively, the incident, the scattered,
and the transmitted intensities; 6 is the scattering angle; and K; =2n/A;,
ky = 2w /A, with A; = (Ag/n) = A, Ao being the wavelength in vacuo, and
n the refractive index of the scattering medium. K [ = (47 /1) sin(6/2)] is the
magnitude of the momentum transfer vector. For visualization of the geometry
in Eq. (1), we set the incident beam polarization to be perpendicular to the
plane of the paper and the scattering plane defined by /; and I,.

where i=h/2m with h being Planck’s constant; k;, k;, and w;, w; are, respec-
tively, the incident and scattered wave vectors with magnitudes 27t /A;, 27 /A and
angular frequencies 2w v;, 2 vy, as shown in Figure 1.1. For structural and dy-
namic information, we can use R &~ K~! as a spatial resolution ruler with which
static LLS is able to probe the size of colloidal particles and macromolecules; and
T~ 1/Av = 1/(v;—vy) as a characteristic time with which dynamic (quasi-elastic)
LLS is able to measure the translational or internal motions, or both, of colloidal
particles in suspension or macromolecules in solution as well as their cooperative
motions in complex fluids. In Table 1.1, typical magnitudes of the momentum and
energy transfers in LLS are compared with those of small-angle X-ray scattering
(SAXS) [3]. It is worth noting that small-angle neutron scattering (SANS) with
neutron wavelength of a few tenths of a nanometer has a AK-range as SAXS.
Table 1.1 illustrates that LLS is complementary to both SAXS and SANS.

1.1.2 SCOPE OF LASER LIGHT SCATTERING

The magnitude of the scattering vector K [= 47 sin(6/2)/)] is a pertinent param-
eter in all the scattering experiments, not the scattering angle 6 or the wavelength
A of the probing radiation in the scattering medium but the ratio of sin(6/2)/A.
This implies that visible light with wavelengths in the range ~400-760 nm in
vacuum can only have relatively small values of K even at the maximum value for
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Table 1.1 Typical magnitudes of momentum and energy transfers in laser light scattering
(LLS) and small-angle X-ray scattering (SAXS).

LLS SAXS
(AM/nm) 300 0.15
Scattering angle (6/rad) Minimum Maximum Minimum Maximum
5% 1072 T 5x 107 2 x 107!
Momentum transfer
(K/nm~1) 1 x 107} 4x107? 2% 1072 10
(R~ K '/nm) 1 x 10° 25 25 107!
Energy transfer
hAv(= hAw)/eV ~10° 1 ~107" No energy transfer
/s ~10 ~107

“Respectively calculated on the basis of the detectable particle size range of 1-1000 nm in
dynamic LLS.

6 = m, and thus, if using visible light as a probing radiation, we can only measure
the size R down to about tens of nanometers. On the other hand, with modern
LLS instrumentation, we are able to measure static and dynamic scattering at a
scattering angle as small as ~3° or &5 x 107> radians, R ~ K~! 2~ 1000 nm, i.e.,
small-angle laser light scattering (SALLS) is capable of measuring micron-sized
colloidal particles in suspension or macromolecules in solution as well as slow
relaxations in gels and viscous media. In comparison with visible light, X-ray and
neutron scattering at a very small angle (e.g., 5 x 107 radians) can have a value of
K assmallas2 x 107> nm™~', which is very close to the highest K of visible light.
Therefore, it is feasible to overlap the SAXS or SANS pattern experimentally with
the one from visible light scattering under favorable conditions. In other words, if
making SAXS measurements at very small scattering angles and visible LLS at
large scattering angles, we are able to match the SAXS and LLS results experi-
mentally. At higher scattering angles, SAXS or SANS overlaps with its diffraction
range and is able to reach atomic dimensions. The visibility of the scattering objects
(macromolecules or colloidal particles) in LLS, SAXS, and SANS, respectively,
depends on the differences in the refractive index, the electron density, and the
scattering cross section between the scattering object and the background.
Strictly speaking, QELS includes Fabry—Perot interferometry and optical mix-
ing spectroscopy; i.e., the frequency broadening due to translational or internal
motions of the scattering object can be detected either in the frequency domain
or in the time domain. Nowadays, the most commonly used method in QELS is
a digital technique of photon correlation spectroscopy in the self-beating mode
to measure the intensity fluctuations of the scattered light in the time domain. In
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dynamic LLS, translational motions of macromolecules or particles within the
size range 1-1000 nm can be measured, whereas structures with the same size
can be studied experimentally by a combination of static LLS, SAXS, and SANS.
The characteristic time of dynamic relaxation in dynamic LLS, which includes
translational, rotational, and internal motions, could vary from seconds to tens of
nanoseconds [4]. In this chapter, we shall discuss only dynamic LLS—specifically,
the self-beating intensity—intensity time correlation spectroscopy—and ignore the
interferometry technique, which could be an appropriate method to study the dy-
namics of complex fluids [5].

Many reviews, books, proceedings, and chapters have been published on the
topic. The present chapter can be viewed as a long abstract in that context, dis-
cussing only the basic practice and principles of laser light scattering. The inter-
ested reader should consult [1] and [2] for details. For those who are interested
in a particular application of LLS, Appendix [ of [1] could be a good starting
point. As a chapter for beginners, readers could also use other books, rather than
proceedings or articles, as reference materials. In particular, the first monograph
on the theoretical aspects of dynamic laser light scattering by Berne and Pecora [6]
is highly recommended because it remains the best source reference in the relation
between the basic equations of light scattering and the dynamic physical param-
cters of macromolecules in solution and colloidal particles in suspension. For the
convenience of discussion, hereafter, macromolecules and colloidal particles are
referred to as particles.

Basic static and dynamic LLS theories are outlined in Sections 1.2 and 1.3,
respectively. The emphasis is on the principles of light scattering, not on the the-
oretical relations between light scattering and the physical parameters of interest
via statistical mechanics; namely, we will use much description instead of mathe-
matical equations. In the past, static and dynamic LLS were often used separately,
which seriously limited their applications. Section 1.4 specially deals with this
problem by using a few examples to show how to combine static and dynamic LLS
results to extract more information. Section 1.5 illustrates the practical experimen-
tal aspects of light scattering, including the development of laser light sources, the
optical and special cell design, sample preparation, and differential refractometry.

1.2 Static Laser Light Scattering

1.2.1 INTENSITY OF SCATTERED LIGHT

For an incident beam Inc having its polarization vertical to a horizontal scattering
plane, as shown schematically in Figure 1.2, the scattered intensity of a single
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Figure 1.2 Typical Zimm plot for an alternating copolymer of ethylene and tetrafluo-
roethylene (M,, =5.4 x 10° g/mol, Ry =45.4 nm, and A, = 1.97 x 10~* mol
ml/g?) in diisobutyl adipate at 240°C.
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where k =2m /A, « is the polarizability of the particle, and d is the distance
between the particle and the observer. For N identical particles in a solvent of re-
fractive index no and polarizability «, the background scattering of the solvent has
to be subtracted; namely, « in Eq. (3) has to be replaced by aex = @ — g as follows:

n*— n% =47 Naex @)
_ng (n—ng\ M
Qex = '2; ( C ) "IV_A (5)

where N = C N/ M with C being the weight concentration. The excess scattered
intensity I for a dilute solution with N identical small particles in volume V
without both intraparticle interference (i.e., the particles are much smaller than 1)
and interparticle interactions (i.e., the particles are sufficiently far apart from each
other) is

I k*a2 N
— = (6)

Iine
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Correspondingly, the excess Rayleigh ratio AR(K) (= Iexd?/Iinc) of the solute
particles for the vertically polarized incident and scattering lights has the form

ARyy(K) = Kng (0n\* o me 7
WA T areN \oC ),

where the optical constant H=4n2n(2)(8h/8C)%,P/(NA)\8). In the presence of

intraparticle interference (i.e., the particle is not so small that light scattered from

two scattering elements within the volume of the same particle has a significant

phase difference), the scattered intensity of a single particle s of a uniform polar-
izability o due to a phase shift is

Iis kol

Inc d*Vp

ka?

d2

/ p(r) exp(iK-r)dv = P(K) &)
Ve

or written as
ARyy(K)= HMCP(K) 9)

where exp(iK - r) is the phase factor with r (= r; — r;) being the vector distance
between the two scattering elements inside the particle volume Vp; p(r) is a radial
distribution function for the scattering elements inside the particle, which may
be defined by the statement that p(r) dv/ Vp is the probability of finding the ith
scattering element within the volume element dv at a distance r from the jth
scattering element; and

P(K):—l—/ p(r)exp(iK - r)dv (10)
Vo Jv,

is a normalized intraparticle scattering factor of a single particle of uniform density
and finite size. The integration is over all orientations and magnitudes of r at
constant K and also over all the scattering elements inside the entire particle
volume Vp [7].

1.2.2 SCATTERING BY PARTICLES WITH DIFFERENT SHAPES

In general, for a randomly oriented particle with an arbitrary shape, the probability
that K and r have an angle between « and « + do is 27 sinow do and thus the
average of the phase factor,

/(; cos(Krcosa)sina da  sin(Kr)

(exp(K - r)) = /n ) X
sina do
0

an
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where K = |K] and r = |r; — r;|. Therefore, for a single particle with a radial
distribution function p(r) and finite size, its normalized intraparticle scattering

factor can generally be defined as
sin(Kr)
p(r) dv
Vp Kr

f p(r)dv
Ve

It is clear that, for a uniform sphere, p(r) = 1 and f Ve p(r)dv = Vp, and thus

1 [ ” R sin(Kr) 4r (R sin(Kr)
PK):—/ d / sing d f r? dr:——/ r? dr
( VP 0 (p 0 ¢ ¢ 0 Kr Vp 0 Kr
(13)

where R is the radius of the particle. On the other hand, for a uniform, long, thin,
rigid rod (i.e., its diameter is much smaller than not only its length L but also the
light wavelength 1) in an equilibrium ensemble, its orientation in all directions is
equally probable so that its orientation distribution function is p(p, ¢) = 1/4x.
Therefore, P(K) can be written as

P(K)= (12)

1 2 T L/2
P(K) = o d(p/ sin¢d¢/ exp(iK - r)dr (14)
L J 0 —L)2

where the integration of » is in one dimension along the length of the rod. If we
let K be along the z axis and use spherical polar coordinates, K- r = Krcos ¢
and P(K) can be expressed in terms of a spherical zero-order Bessel function

Jo(w) = sinw/w; i.e.,
1 27 T ) e
P(K) = —/ d(p/ sing d¢ j0<—005¢>
477 0 0 2
jo(%))l dy (16)

Letting y = cos @ and integrating over ¢, we have
1 1
P(K)= =
(K) 3 ﬁ l
where x = K L. Equation (16) cannot be solved analytically, but a numerical eval-
uation can show how P(K) depends on K and more precisely on x. Equation (16)
can also be written in a more common form [6]

paoy=2 [Tatne [Esm(’-‘)]' (a7)
x Jo Z X 2

The integral on the left is a tabulated function. Further, for a Gaussian chain with
a total number of n statistic segments its mean square end-to-end distance by

2
(15)
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definition is
(r¥(n)) = ’n (18)

where ¢ is the length of a statistic segment depending on the nature of the particular
chain. The definition is also valid for a portion of the chain with a number of m
statistic segments. In the volume element dv, the probability of finding any two
segments (i, j, and m = i — j) follows a Gaussian distribution [8]

P T T 3\, 19

[t is worth noting that this probability distribution is derived from the random
flight of a particle over a distance r over a large number of steps, implying that the
polymer chain is very flexible and that each statistic segment contains a sufficient
number of elementary chemical bonds. Integrating w(r) over all possible values
of m (i.e., from 0 to n), we have

2 [ 377 3r?

Placing p(») in Eq. (10), we have

pwr=2 [T man [ |2 " ('K S
= — n—m)dm e —— ex ‘r— ———— | dv
e Y] 2w 2 m) P\ 202 (m))
(21)
Integrating r over the particle volume Vp, we finally get
2 n K 2
P(K) = —7/ (n —m)exp(— v (m_)) dm (22)
n= Jo 6
or further,
2
P(K) = S[K?R?* — 1 + exp(—K*R? (23)
(K2 Rg)z [ g ( g)]

where Ré (= €%n/6) is the square radius of gyration of the Gaussian chain, and its
general definition is

/ p(0)|r — ro|* dv
R2: Vp

g
/ p(rydv
v,

24)
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where p(r) is the mass density at r with ry being the gravity center of the particle
and M is the mass of the particle. For a uniform sphere with a radius of R,

Ry
f 4rrt dr
R=f g (25)
- - 0

g Ro
/ dr’dr
0

For a uniform rigid rod with a length of L, the number of mass elements at a
distance between x and x + dx is proportional to dx. Therefore,

L2
/ x2dx )
R J-LP L

g L)2 12
/ dx
L2

On the basis of Eq. (23), at small values of KR,, the scattering factor of the poly-
mer chain can be approximated by

(26)

1
P(K)~1+ .3-K2R§+ (27)

It can be shown that Eq. (23) is not only valid for the Gaussian chain but also for
particles or macromolecules of arbitrary shape. This is because Eq. (12) can be
approximated as

K2 / p(rr’dv
P(K)xl——6——v"——~+--- (28)
/ p(r)ydv
Vp
where r = [r; — r;|. Replacing r with |(r; — ro) — (r; — ro)|, we can rewrite

Eq. (26) as
2
) / p(r)(x = 1x0)* dv f p(r)(r = ro)dv
K v, A
P(K)S 1+ |27 +2 .

f p(r)dv f p(r)dv
V. V,

P 3

(29)

where the second term in the bracket is equal to zero because | v, p(rrdv/ f v, p(r)
dv = ry, and thus we have P(K)~1 + (1/3)K2R§ + .-+, as long as KR, K 1.
A graphic display of P(K) of sphere, thin rod, and Gaussian coil can be found
elsewhere [9].
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1.2.3 ZIMM PLOT—CONCENTRATION AND
ANGULAR DEPENDENCE

So far, we have only dealt with monodisperse particles at infinite dilution; namely,
we have not considered the interparticle interaction or the interference between
the light scattered from different particles. For large particles (Ry > A/10) in
a dilute solution, Eq. (9) is simply not a linear function of the particle concen-
tration. Considering the intraparticle and interparticle interference between the
scattered light, Debye [10] showed that the concentration dependence can be ex-
panded as a power series in concentration, i.e., the virial expansion

HC _ 1
Rw(K) MP(K)

where A, is the second virial coefficient. Further, by considering that the particles
have a size or mass distribution, we can rewrite Eq. (9) as

1
S IaRW(OL =B M (1= SRR+ )

+2A,C + - (30)

or

1 2/ p2
Y [ARw(K)]; = HCM, (1 - 3K (R2), + - ) (31)

L

where My (= )~ M;C;/C) is the weight average molar mass, and (Rg‘);/z(: > M,
C; Réi / >~ M;C;) (or written as (R,)) is the root mean square z-average radius of
gyration. Thus, we have the basic equation for a polydisperse sample in dilute
solution and measured under the condition K (R,) < 1 in static light scattering

HC 1 1
~— 14+ -K}R? 24,C 32
Ruv(K) MW< 3K g)z)+ ? G2

where ARyy is now denoted by Ryy because the excess value is obvious. It
shows that with R,,(K) measured over a series of C and K, we are able to de-
termine (R,) from the slope of [HC/R,v(K)]c_o versus K 2, A, from the slope
of [HC /R (K)]x—o versus C; and My, from [HC/R,(K)]c-0 k0. The Zimm
plot, i.e., HC /R, (K) versus K2 + kC with k being an adjustable constant, allows
both K and C extrapolations to be made on a single grid [11]. Figure 1.3 shows a
typical Zimm plot for an alternating copolymer of ethylene and tetrafluoroethylene
(My, = 5.4 x 10° g/mol, (R,) = 45.4 nm, and A, = 1.97 x 10~* mol ml/g?) in
diisobutyl adipate at 240°C [12]. It should be noted that Eq. (32) is valid under the
restriction that the polymer solution exhibits no absorption, no fluorescence, and no
depolarized scattering. As for anisotropic rigid and nearly rigid rods that result in



12 C. Wu and B. Chu

6.80 E

5.10

3.40 ‘%
%
1.70 | Lz%

0.00 °P00000g 4 un &

0.00 1.00 2.00 3.00

{IGP()-A)/A} 1 107

t /(ms)

Figure 1.3 Typical normalized intensity—intensity time correlation function for chitosan
(M, = 1.06 x 10° g/mol and (') = 2.19 ms) in 0.2 M CH;COOH/0.1 M
CH;COONa aqueous solution at T = 25°C, 0 = 45°, and C = 4.96 x 10~*
g/mol.

depolarized scattering, readers should refer to the excellent review article of Russo
and the references therein [13]. As for the correction of absorption and fluores-
cence, readers are advised to refer to the characterization of Kevlar (a DuPont trade-
mark) in concentrated sulphuric acid by Chu et al. [14, 15] and Ying and Chu [16].

In practice, the Rayleigh ratio is determined by a relative method, namely, by
measuring the scattered intensity of a standard, such as benzene or toluene, we can
calculate the Rayleigh ratio of a given solution using the expression

Rw(K) = RQ/V(K) (I')solution _0 (I')solvent (_n_o)y (33)
{1%) n

where the superscript 0 denotes the standard and / and n are, respectively, the
time-averaged scattered intensity and the refractive index. The term (n/n°)" is a
refraction correction for the scattering volume and y is a constant between 1 and
2, depending on the detection geometry of the light-scattering instrument, because
we should compare the same scattering volume from the solution and the reference
standard. If taking the incident light as the x-direction and the scattered light as the
y-direction (i.e.,6 = 90°), we only need to have a linear correction of the refraction
in the x-direction if a slit is used to determine the scattering volume (i.e., y = 1)
because we already see all the scattered lights in the z-direction (vertical). On the
other hand, if a pinhole with a size much smaller than the diameter of the incident
beam at the center of the scattering cell were used, we would have to correct the
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refraction in both the x- and z-directions (i.e., y =2). However, if the pinhole size
is comparable with the beam diameter, 1 < y < 2. In practice, we should avoid this
situation by choosing either a slit or a smaller pinhole.

1.3 Dynamic Light Scattering

1.3.1 SPECTRUM OF SCATTERED LIGHT

The phase integral in Eq. (10) accounts only for the intraparticle interference
effect. However, in optical mixing spectroscopy (dynamic light scattering), we
now consider the interference of the light scattered by different volume elements
within a scattering volume V with local dielectric constant fluctuations. Therefore,
the phase integral in this case has the same form as Eq. (10) but is over a scattering
volume V (no longer the particle volume V},), and r is the position vector in V. For
a rectangular parallelepiped of dimensions Ly, L,, and L, the normalized phase
integral as a function of K’ around K’ = 0 results in

) V  when 27 /|K] is within V
. = 4
_/;, exp(iK - ) dv ’0 otherwise (34)

where K (= r; — ry; + K’) and the variation range of K’ is the uncertainty of
the momentum transfer and is related to the finite size (and shape) of V. It is
important to keep the angular aperture of the detector small in the design of an
optical mixing instrument because the farfield observation of the radiation field
from the plane wave components of local dielectric constant fluctuations must
satisfy the conditions of Eq. (34). A practical question of how small the angular
“aperture is has been discussed by Berne and Pecora [6]. It has been estimated that
the coherence area Aoy, for a typical optical mixing experiment is

)\2
Acoh ~ 5 (35)

where 2 is the solid angle subtended by the scattering volume at the detector. In an
optical mixing experiment, the important quantity is the signal per coherence area.
By reducing the scattering volume, we can have a smaller €2 and a larger Acop.
However, the larger the scattering volume, the stronger the scattered intensity
and the smaller the statistical noise. Therefore, there is a trade-off and balance
in choosing a proper scattering volume. We will come back to this point later in
Section 1.5.
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1.3.2 SIEGERT RELATION

Without a local oscillator (i.e., a constant fraction of the incident light reaching
the detector from various intentional or unintentional sources, such as surface
scratching or reflection), the self-beating of the scattered electric field leads to the
intensity—intensity time correlation function, G® (K, t) based in essence on the
Siegert relation:

GO(K, 1) =(I(K,0I(K, )= A(1 + BlgV(K, D)) (36)

where A (= ([(K, 0)I(K, 0))) is the baseline, 7 is the delay time, f is a parameter
depending on the coherence of the detection optics, |gV(K, 1) (= (E(K, 0)E*
(K, 1))/(E(K,0)E*(K, 0))) is the normalized electric field—field time correla-
tion function, and /(K t) is the detected scattered intensity or photon counts
at time ¢, including contributions from the solvent and the solute. Therefore,
G(z)(Ky t) = <[Isolvem(K7 O) + Isolute(Ks 0)][Isolvcnt(K7 t) + ISOlUlﬁ(Kv t)]) and Eq~
(36) become

G(L’)(K’ H=A {1 +ﬂ|: solvent ’ mlvem(K [)[ + Isohne é(l,;u[e(K t)q ] (37)
solution solution

where all the cross terms have been dropped by assuming that the light scat-

tered by solvent molecules and particles is not correlated. It should be noted

that Igicl,])vem(K , t)| decays much faster than lgiéfme(K , 1)| because small solvent

molecules diffuse much faster than larger particles. Thus, after a very short delay

time, Eq. (37) becomes

o

ISOLIC
c@«mm[w( 4 ) el K, ﬂ AL+ Bl K.

solution

(38)

where Bapp = BUsolute/ solution)?. For a dilute solution, the scattering from solvent
molecules could become appreciable (i.e., lsolute < Isolution) and thus the apparent
coherence would be lower; i.e., G®(K, 0) appears to have a lower value than ex-
pected. The reader should be aware of this fact, especially for weakly scattered,
dilute low-molar-mass polymer solution. For example, if Jsoe = Lsolvents Bapp =
B/4. 1t should be noted that S is a constant for each particular optical geometry of
the scattering instrument. In fact, Iy, can be estimated from By, if the values of 8
at different scattering angles have been precalibrated with a narrowly distributed la-
tex standard whose scattering intensity is much stronger than water (solvent), as was
first demonstrated by Sun ez al. [17]. The beginner in LLS should be aware that such
ameasurement is not a routine method and is reserved only for some particular ex-
periments in which a direct and accurate measurement of Isopuion— Isotvent 18 difficult.
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1.3.3 DIFFUSIONS AND INTERNAL MOTIONS

Generally, the relaxation of |g" (K, 1)] includes diffusion (translation and rotation)
and internal motions. Let us first consider the translational diffusion relaxation of
the particles. For amonodisperse sample, |g" (K, 1)| is theoretically represented by

gV, )| = Ge™™ (39)

where G and I' are the proportionality factor and the line width, respectively. For a
dilute solution, I' measured at a finite scattering angle is related to C and K by [18]

I'=K*D(1 + ksC)(1 + f(R2).K?) (40)

Here D is the translational diffusion coefficient of the solute molecule at C — 0,
kq is the diffusion second virial coefficient, and f is a dimensionless parame-
ter depending on polymer chain structure and solvent. Hence, for small C and
K, D ~ I'/K?. For a polydisperse polymer sample with a continuous distribution
of molar mass M, Eq. (39) may be generalized as

gk, )| = / G(D)e X*P'dD (41)
0

where G(D) is called the translational diffusion coefficient distribution. It should
be noted that by the definition of |g'V(K, )|, G(D) is an intensity distribution of
D. This equation is the basis of some discussion in this chapter. Note that because
lgV(K, t)| approaches unity as t — 0, we have

E(K,0OE*(K,t — 0))

(
1 =
|gVK. 1 = O = = Ko

_ /OO GD)dD =1  (42)
0

Figure 1.3 illustrates the gV (K, t) data for chitosan (M,, = 1.06 x 10° g/mol and
(D) =5.92 x 1078 cm?/s) in 0.2 M CH3COOH/0.1 M CH3COONa aqueous so-
lution at 25°C, 8 =45°, and C =4.96 x 10~* g/mL [19], where (D) is the average
diffusion coefficient defined as

o0
(D) :/ G(D)DdD (43)
0
In the consideration of the contribution of the rotational diffusion to the relaxation,

the simplest case would be a monodisperse rigid thin rod. For an incident light ver-
tically polarized to the scattering plane, the time correlation function of vertically



16 C. Wu and B. Chu

polarized scattered light in the self-beating mode leads to
800, K)lyy o e K (1 4 yeoP) (44)

and that of horizontally polarized scattered light in the self-beating mode has the
form

1812, K|y o e7F 0P (45)

where D, is the rotational diffusion coefficient and y is a constant that may be
related to molecular anisotropy or configuration. For details, the reader should
refer to Berne and Pecora’s book [6] and the chapter written by Russo [13].
Equation (44) shows that if the scattering angle is very small (i.e., K < 1/L),
1gV(¢, K)|yv is approximately proportional to e=%°?! because the relaxation of
the rotation term is relatively fast in this case. Therefore, to observe the rotational
diffusion, one has to measure the time correlation function at a relatively high
scattering angle.

As for a long, flexible polymer chain, we have to consider the relaxation asso-
ciated with the internal motions, which are also known as the normal modes or
“breathing modes.” For simplicity, we leave the polydispersity out of the following
discussion. As was shown by Berne and Pecora, when an infinitely dilute polymer
solution is illuminated by a coherent and monochromatic laser light beam, the
spectral distribution of the light scattered from a flexible polymer chain can be
written as

1 ,
SK, w) = >~ f e~ =4’ Dl J(K | 1) dt (46)

where o is the difference between the angular frequency of the scattered light and
that of the incident light, K is the scattering vector as previously defined, and the
function

i=0 m=0

1 L&
JK, 1) = <m Z Z e-lK'[re(0>rm(r>1> (47)

is the spatial Fourier transform of the segment—segment time correlation function.
It arises from the interference of the scattered light from different segments in
a polymer chain with N such segments. It contains all the temporal and spatial
information on the intramolecular (or internal) motions of a polymer chain. Here
r¢(0) is the position of the /th segment at time 0 and r,,(¢), that of the mth segment
at time ¢, both are referred to the center of mass of the polymer chain.

To perform the ensemble average in J(K, t), an explicit model for the internal
motions of a polymer chain is needed. By incorporating the Oseen—Kirkwood-
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Riseman hydrodynamic interaction into the bead-and-spring model, Perico et al.
[20] have shown

N
S(K,w) = Poy(x)L(@, DK*)+ )" Pi(x,@)L(w, DK* +T,)

a=]

N N
+ Y > P(x., BL(@, DK+ Ty +Tp) + - (48)
=1 a=1

where x = (RyK)* and the functions

2A

27 (w? + A?)
represent the w-normalized Lorentzian distribution with A being the half-width
at half-height, i.e., the line width, and the P,s(n=0,1,2,...) determine the
contributions of the different Lorentzians to the spectrum of the scattered light.
The zeroth-order Py(x) represents the contribution of the translational diffusion,
Pi(x, @) the first-order contribution of the ath internal mode, P»(x, «, B) the
second-order contribution of the ath and Sth internal modes, and so on.

When x < 1, the spectral distribution is measured in the long-wavelength regime,
and hence Py(x) is dominant in S(K, w). As x increases, the contributions from
Pi(x, @), Py(x, «a, B), and other higher-order terms become more and more im-
portant. Perico et al. [20] have numerically shown that Py(x, 1, 1) is the largest
contribution to S(K, w) among all the Lorentzian terms associated with the inter-
nal modes. In a modern dynamic laser light-scattering experiment, the intensity—
intensity time correlation function of the scattered light is usually measured, from
which S(K, t), the Fourier transform of S(K, w), is determined.

Figure 1.4 shows typical plots of G(I'/K?) versus I'/K? for a narrowly dis-
tributed high-molar-mass polystyrene standard (M, =1.02 x 107 g/mol and
My /M, =1.17) in toluene at T =20°C and at different x values; the insert shows
a ~10-times enlargement of the second (smaller) peak of the distribution in the
range 10771076 cm?/s [21]. It clearly shows the following:

Lw, A) = (49)

1. Atx < 1, as expected and discussed previously, there exists only one
single and narrow peak.

2. At x = 1, the second peak with a higher I" appears in G(I'/ K %), whereas
the first peak is basically unchanged in position and shape. This second
peak is related to the internal motions.

3. Athigher x, the first peak is getting broader and shifting to higher I'.
This is because at higher values of x, the measurement scale K ~! is
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Figure 1.4 The x-dependence of G(I'/K?) for a high-molar-mass polystyrene standard

1.3.4

(M,, =1.02 x 107 g/mol and M,,/M, =1.17) in toluene at T = 20°C, where
X = (RgK)2 and G(I'/K?) was calculated by using the CONTIN Laplace in-
version program.

smaller than the chain dimension &R, and thus the contributions from
the translational and internal motions are mixed in the measured
spectrum that caused the broadening and shifting of the first peak.

. At x > 15, the first and second peaks in G(K/ r?) merge into a single

and broader distribution because the line width (K2 D) associated with
the pure translational diffusion increases with x, but the line widths
related to the internal motions are independent of the scattering angle.

METHODS OF CORRELATION FUNCTION
PROFILE ANALYSIS :

Equation (39) indicates that once |g"(K, ¢)| is determined from G® (K , t) through
Eq. (36), G(I") or G(D) can be computed from the Laplace inversion of |gV(K, ¢)|
[22-26]. In the last three decades, many computation programs were developed. In
the early stage, the computation speed was a very important factor in the program
development. This constraint has gradually been removed because the personal
computer has become faster and faster in the last 10 years. Among the many pro-
grams, the CONTIN program developed by Provencher [27] is still one of the most
widely used and accepted for this computation. However, it should be noted that
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Eq. (41) is one of the first kind of Fredholm integral equations. Its inversion is an
ill-conditioned problem because of the bandwidth limitation of photon correlation
instruments, some unavoidable noises in the measured time correlation function,
and a limited number of data points. In other words, the data for gV(K , t) does not
always provide information necessary and sufficient to determine G(I") uniquely.
Thus, in practice, reducing the noises in the measured intensity time correlation
function becomes more important than choosing a program for data analysis. It is
crucial that the solution be cleaned (i.e., “dust-freed”) very thoroughly before it is
subjected to laser light-scattering measurements. A common guideline is to keep
the relative difference between the measured and the calculated baselines less than
0.1%. The error analysis related to the preceding problem can be found elsewhere
[28, 29].

It is worth noting that there is a temptation among the users of dynamic LLS
to extract too much information from the measured intensity—intensity time corre-
lation function, actually from experimental noises. In the literature, three or four
peaks in G(D) were often reported. It is important to note that even a bimodal
distribution of G(D) has to be well justified by other physical evidence or pre-
experimental knowledge. This does not mean that many of the Laplace inversion
programs developed in the past are useless. On the contrary, they have been quite
successful in retrieving the desired information, especially in terms of the average
line width (I') (= fooo I'G(I") dT") and the relative width of the line-width distribu-
tion uy/(I')? with up = f;°(I' = (I'))*G(I") dT". Therefore, the Laplace inversion
is a very helpful method in the analysis of the line-width distribution, but it should
be used with a clear understanding of its ill-conditioned nature and its limitations.

The uninitiated reader may wish to consult chapters from two books on poly-
dispersity analysis: Photon Correlation Spectroscopy of Brownian Motion: Poly-
dispersity Analysis and Studies of Particle Dynamics edited by Schulz-DuBois
[30] and Essentials of Size Distribution Measurements edited by Dahneke [31]. In
practice, if one is only interested in the determination of (I') and 1, /(I")?, a fast
but more limited cumulants analysis adopted by Koppel [22] can be used, wherein
[GP(K,t) — A]/A is expanded as

GP(K,t)— A pat?  pst?
ln[———*A———}zlnﬂ—(rﬂ%—T*‘Tﬁ-'“ (50)
where
om = / (T — (O)Y"G(T)ydr 51)
0

is the mth moment of the line-width distribution G(I"). An mth-order cumulants
fit means that all the terms higher than ™ in Eq. (50) are terminated in the data
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analysis. It is worth noting that, in practice, the cumulants fit can be used for a
relatively narrow characteristic line-width distribution. For 1, /(I")?> < 2 0.2, the
second-order cumulants fit is normally sufficient, whereas with 1, /(I")? in the
range ~0.2—0.3, the third-order cumulants fit is required. For even higher values
of u,/(I")2, higher-order expansions should be used. However, it is often difficult
to know how many terms are sufficient to obtain a meaningful result because using
too many terms in the cumulants fit might lead to an overfitting of experimental
noises. Therefore, for broadly distributed samples, the use of a cumulants fit is
very tedious. On the other hand, the use of CONTIN or MEM (maximum entropy
method) can yield reliable (I') and jz,/(I")* values under all conditions as long
as the measured time correlation function is obtained within a proper bandwidth
range and the photon counts have sufficient statistics, e.g., the baseline (A) has a
relatively large number of total counts (i.e., over 10°). However, the reader has to be
warned that the line-width distribution obtained from the Laplace inversion is only
an estimate, and one should therefore be aware of the limitations. Yet, it should be
noted that the Laplace inversion method can provide useful information and dis-
tinguish between unimodal and multimodal line-width distributions—especially
when the peak positions are separated by a factor of more than 2.

1.4 Methods of Combining Static and Dynamic LLS

Dynamic LLS (DLS) plays a very important role in particle sizing. In a dilute
dispersion, if the colloidal particles have a spherical shape, or in other words, for
colloidal particles in the absence of rotational and internal motions, G(I") can be
converted to the hydrodynamic size distribution f(Ry) by means of D = I'/K*
and the Stokes—Einstein relation D = kg7 /67 nRy, with kg, T, and n being the
Boltzmann constant, the absolute temperature, and solvent viscosity, respectively.
All the parameters in the conversion are either well-known constants or precisely
measurable by other methods. Therefore, particle sizing on the basis of DLS can
be considered as an absolute method without calibration. This is why DLS is so
successful in particle sizing and many commercial instruments have been devel-
oped by using the DLS principle. For details, the reader should refer to the book
edited by Gouesbet and Grehan [32].

1.4.1 MOLAR MASS DISTRIBUTION DETERMINATION

The determination of molar mass and molar mass distribution is a very important
part of polymer characterization. Many experimental methods, including LLS, have
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been developed and routinely used for this purpose. The absolute methods include
end-group chemical analysis, vapor pressure osmometry, membrane osmometry,
sedimentation equilibrium, static (classic) LLS, and the very recently developed
matrix-assisted time-of-flight mass spectroscopy because they do not require a
calibration with a set of narrowly distributed polymer samples with known molar
masses. The relative methods include viscometry, gel permeation chromatography
(GPCQ), field flow fractionation (FFF), and DLS.

The average molar mass (M) of a polydisperse polymer sample is generally
defined by

o0 o0
(M) = ‘/;I(M)M’l’dM/ fuMYM? dm (52)

0 0
if ¢ is an integer, where f,(M) is the number distribution of molecular weight
M. Thus, ¥ = 1 for the number-average molar mass (M,), ¥ = 2 for the weight-
average molar mass (M), and ¢ = 3 for z-average molar mass (M;). For example,
M,, is measured by end-group analysis and osmometry; My, by GPC, sedimentation
equilibrium, and static LLS; and M,, by sedimentation equilibrium and DLS. In
practice, the ratio of M,/ M, is called the polydispersity index and is conveniently
used to characterize the distribution width of a given polymer sample.

Among these methods, using DLS to characterize polymer molar mass distribu-
tion has yet to become popular because it requires a more sophisticated instrumen-
tation, a better understanding of LLS, and, more important, a calibration between
D and M. Itis worth noting that in the characterization of polymer molar mass dis-
tribution, LLS as a nonintrusive and nondestructive method has certain advantages
because it can use a strong corrosive solvent, such as concentrated sulphuric acid,
and it can be operated at high temperatures (e.g., at 340°C). Though not involving
fractionation as in GPC, a combination of static and DLS results allows estimation
of the molar mass distribution of a polymer. The principle is as follows: For a
polydisperse polymer consisting of n homologous species it is known on the basis
of Eq. (41) that G(D;) for species i at vanishingly small C and K is proportional
to its scattered intensity /;, which is further proportional to M;w;, and thus

G(D;) = Mw, / > M, (53)
j=1

where w; denotes the weight fraction of species i with molar mass M;. For a
continuous distribution of molar mass, this gives

G(D)dD = Mf,,(M)ydM/M, (54)

where f,,(M) denotes the differential weight distribution of molar mass M. Thus,
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we get
MyG(D)dD
WMy = 2 O
Ju(M) M dM (55)
Empirically we have for a series of homologous polymers [33]
D =kpM~ (56)

where kp and ap are two scaling constants. Experimentally, it has been confirmed
that for a flexible polymer, 0.5 <ap < 0.6 in a good solvent and &p = 0.5 in a
Flory ®-solvent; for a rigid rodlike chain, «p = 1; and for a semirigid, wormlike
chain, 0.6 < ap < 1. Therefore, Eq. (5) can be written as

fu(M) & D3 G(D) (57)

because My, kp, and «p are constants for a given polymer solution. With Egs. (56)
and (57), we are able to transfer D to M and f,,(M) to G(D) if the values of kp
and «p are available from separate sources. This is the basic idea of the method
that allows information about f,,(M) to be derived by dynamic LLS, which is very
similar to the particle sizing approach.

The most straightforward method for calibrating the relation between D and M
is to measure both D and M for a set of monodisperse samples with different mo-
lar masses. In reality, the monodisperse samples have to be replaced by narrowly
distributed standards made available either by relevant living polymerization or
by fractionation of a broadly distributed sample. However, only very few kinds of
polymers such as polystyrene and poly(methyl methacrylate) can actually be pre-
pared so as to have a sufficiently narrow molar mass distribution (M, /M, ~ 1.1),
and the fractionation is very time consuming. Thus, the straightforward calibration
of the D versus M relation is not always practical.

Figure 1.5 shows the plot of log(D) versus log(M) for a set of narrowly dis-
tributed polystyrene standards in toluene at 20°C [34]. The line represents a least-
square fitting to the data points, giving D (cm/s) = 3.64 x 10~*M~%377_ Using this
relation, we were able to estimate the molar mass distribution of polystyrene by
using only DLS [35]. However, as noted earlier, in reality only a few kinds of poly-
mers can be prepared to have narrow enough distributions of molar mass. Hence,
we often have to satisfy ourselves with more broadly distributed samples having
different average molar masses. This means that special analytical methods have
to be developed to calibrate or scale the translational diffusion coefficient D and
molar mass M from broadly distributed samples. An approach to this problem is
described as follows. As can be easily shown, it follows from Egs. (52) and (56)
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Figure 1.5 Double logarithmic plot D versus M for polystyrene in toluene at 20°C. The
line represents a least-square fit of D (cm/s) = 3.64 x 107*M~9577, See [42].

that
[e'e]
Mw:(kD)'/"“/f G(D)D'*»dD (58)
0

The quantity on the right-hand side is denoted by M Q'3 . For any given setofk and
ap, M3, can be calculated when G(D) is determined from DLS measurements.
For two polydisperse samples i and j, one can obtain
(Mul?,léglc)i _ fooo G,(D)D"*»dD 59)
(MY3e),  Jo” Gi(D)DVedD

w,calc

where G;(D) and G ;(D) are for the samples i and j, respectively. The right-hand
side can be calculated from measured G(D); and G(D); for any ap, and if the
chosen value of ap happens to be equal to that for the system under study, the
resulting value of (M3, )i /(M3 ) j should agree with the value of (M, ); /(M) ;
from static LLS. In reality, the desired ap will be reached by using a computer

program that seeks a minimum of ERROR(«p) defined by

[ (), T
ERROR(«rp) = = Senld (60)
22 G, ),
where N is the total number of the polydisperse samples examined. Next, with
the ap value so determined, we can compute (M55 ); for each of the N samples

from Eq. (58) by varying kp and seeking a kp value that minimizes ERROR(kp)
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Figure 1.6 Plot of ERROR(kp) calculated with data for five chitosan samples with differ-
ent weight average molecular weights. Here the minimum of the dashed curve
corresponds to ap, = 0.665 4 0.015 and k, = (3.14 4 0.20) x 1074,

defined by

ERROR(k | (M) Z

i w,calc

Figure 1.6 depicts a plot of ERROR(kp) at three values of «p calculated from
a combination of static and dynamic LLS results for five chitosan samples with
different values of M,,. The figure illustrates that for each chosen «p, ERROR(kp)
shows a sharp minimum, but the location and height of the minimum vary sig-
nificantly with «p, and the minimum becomes the smallest at «p =0.665 and
kp=3.14 x 10~*. With these values, the molar mass distributions of chitosan
samples have been successfully characterized [19]. It can be seen that the method
discussed in the preceding involves only a light-scattering instrument, and it is
a self-calibrated method. It is worth noting that unlike GPC, the light-scattering
calibration is independent of the LLS instrument used.

If only one broadly distributed sample is available, we have to resort to another
method to determine the relation between D and M. One possibility is to estimate
ap from the Mark—-Houwink equation for intrinsic viscosity. It is known that the
intrinsic viscosity [n] can be scaled with M by the Mark—Houwink equation, i.e.,
[n] =k, M*, and, according to Flory and also to de Gennes [33, 36], p may be
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equal to (o, + 1)/3. With ap estimated from «,, by this relation, M,, from static
LLS and G(D) from dynamic LLS can be used to determine & as described in
the preceding. Chu et al. and Pope and Chu {37, 38] successfully applied this
method to linear polyethylene in 1,2,4-trichlorobenzene at 135°C for which «p
was estimated from the value of «;, = 0.72 reported by Cervenka [39]. Figure 1.7
shows the resulting cumulative weight distribution Fy cun(M) [= [y fu,(M)dM]
and compares it with the result obtained by high-temperature GPC. The agreement
is reasonably good, but it should be noted that the weight distribution from LLS
is usually narrower and more skewed toward the high molar mass than that from
GPC because the scattered light intensity is proportional to the square of molar
mass, and thus higher-molar-mass species weigh more in LLS.

For only one given broadly distributed sample, one can also combine LLS
with other methods, such as GPC. The static LLS apparatus used as an on-line
GPC detector has been popular for a while (e.g., the multiangle LLS detector
from Wyatt Technology Co.). Here, we illustrate another less-known method of
combining the results from GPC and off-line dynamics LLS. The basic principle
is as follows: There is a similarity between these two tools in that the translational
diffusion coefficient D obtained by dynamic LLS and the elution volume V in
GPC are related to the hydrodynamic size of a given macromolecule. In a first
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Figure 1.7 Comparison of cumulative weight distributions Fy, cum(M) [= /l;c fw(M)dM]
obtained by DLS and SEC (size exclusion chromatography) for a linear
polyethylene in 1,2,4-trichlorobenzene at 135°C.
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approximation, if the hydrodynamic size is proportional to the molar mass, we have
V = A+ Blog(M) (62)

where A and B are constants similar to kp and «p. It should be noted that this ap-
proximation simplifies but does not affect the following discussion. A combination
of Egs. (56) and (62) leads to

V = A+ Blog(D) (63)

where A = A + B log(kp)/ap and B = —B/ap. Furthermore, we get from
Eq. (63)

V? = A> + 2ABlog(D) + B*log(D) (64)

Averaging both sides of Egs. (63) and (64) over the concentration profile C(V) in
GPC, we obtain

(V) = A+ B(log(D)) (65)
and
(V?) = A? + 2AB(log(D)) + B*(log*(D)) (66)
where
(V) = /OO VC(V)dV (67)
0
and
(VhH = foo VEC(V)dV (68)
0
whereas
f log(D)C(V)dV
(log(D)) = — (69)
/ C(V)dv
0
and
/ log?(D)C(V)dV

(log’(D)) = = (70)

/ c(vy)dv
0

Though not yet theoretically proved, it is usually assumed that the differential area
C(V)dV undera GPC curve is proportional to the differential mass of the polymers
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dW contained in the differential elution volume dV . Because dW « f,,(M)dM,
we have

C(V)dV  fu(M)dM (71)
Combining Egs. (57), (69), and (71), we have
/ log(D)G(D)D'erqv
(log(D)) = 2— (72)
/ G(D)D'Y4r 4v
0
and, correspondingly
f log’(D)G(D)D'*rdV
(log*(D)) = = (73)

o0
/ G(D)D'% qv
0

Multiplying both sides of Eq. (71) by M and integrating over the entire range of
M, we have

szf MC(V)dV (74)
0

Elimination of M from the right-hand side using the relation D = kpM ~*? and
Eq. (63) transforms Eq. (74) to

o0
M, = k)/*® / 10B-V/@B vy gy (75)
0

which is combined with Eq. (58) for M,, to give

/oo ]O(A*V)/(anB)C(V) VA%
0 =1 (76)

o0
/ G(D)DY*»dD
0

This equation contains only one unknown parameter «p. For a chosen «ap, one
first calculates (log(D)) and (log*(D)) using Eqs. (72 and 73, respectively), then
calculates 4 and B by solving Eq. (66) with (V) and (V?) computed from the
GPC curve, and finally calculates the left side of Eq. (76). By iteration, one can
find a value of ap to minimize the difference between the left and right sides of
Eq. (76). For the «p so obtained, one can calculate kp, from either Eq. (58) or (75)
by using M,, determined directly from static LLS and C(V) from GPC or G(D)
from dynamic LLS. With 4, B, kp, and ap, one is ready to calculate A and B. In
this way, one can calibrate not only the M versus V relation but also the M versus
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D in a single process by using only one broadly distributed sample. This method
has been tested and applied in the characterization of gelatin in water [40, 41].

When the relation between D and M is established, one can easily convert
G(D) obtained by dynamic LLS into a corresponding molar mass distribution.
The applications of this method in the characterization of special polymers has
been reviewed by Wu [42].

1.4.2 CHARACTERIZATION OF BLOCK COPOLYMERS

A combination of static and dynamic LLS can also be used to estimate the com-
position distribution of a block copolymer. Let us consider a copolymer sample
consisting of monomers A and B. The sample is generally polydisperse in both
molar mass and chain composition. We suppose that the copolymer species i is
characterized by the molar mass M; and the composition w,;, which is the weight
fraction of A in the chain of that species. It is assumed that no compositional het-
erogeneity exists in the chains of the same length. For homopolymers, the refractive
index increment (at infinite dilution) does not depend, in a good approximation,
on the molar mass of the chain but is equal to that of the entire sample. For copoly-
mers, this is not the case, and, according to the theory of light scattering, Eq. (53)
for G; may by replaced by

G,‘ :(1711,/11)2M,'w,'/ZMjwj (77)
J

where v; is the refractive index increment due to the copolymer species i; v, that
of the entire sample; and w;, the weight fraction of the copolymer species i. With
a continuous distribution of molar mass, Eq. (77) is generalized to

G(D)YdD = (v(M)/v)*M f,(M)MdM (78)

where v(M) is the refractive index increment due to the chains of molar mass M.
Note that v(M) depends on w4 (M ). which is the continuous version of wy,;. We
assume that this dependence is represented by

V(M) = vawa(M) + vg[l — wa(M)] (79)

where v and vg are the refractive index increments of the homopolymers con-
sisting, respectively, of A and B. Recalling Eq. (55) for homopolymers, we can
introduce fy, .pp(M), an apparent weight distribution function of M, by

fw.upp(M) = (MW/M)G(D)(dD/dM) (80)
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With Eq. (56) (assumed to also hold for copolymers), this gives
Foapp(M)/ My, = (1/kp)*/** G(D)D'*F/ev) 1)

Therefore, fy, .pp(M)/M,, canbe calculated from G(D) measured in dynamic light
scattering when k; and o are known separately. On the other hand, substituting
Eq. (78) together with Eq. (79) into Eq. (80), we get

Fwapp(M)/ My, = v 2 [uawa(M) + vp(1 — wa(M))]* f,,(M) (82)

where fy app(M), v, v4, and vg vary with solvent. On the basis of Eq. (82), and by
choosing two solvents 1 and 2 for a given copolymer, we have

1) Soapp™) _ |n® WA 4 (1 — wa(M)ng |’

83
FoupM) |1 wan + 11— wa(M)lng) )

The ratio on the left-hand side can be obtained as a function of M because
Fuw.app(M)'/M,, can be determined as described previously from dynamic LLS.
Thus, Eq. (83) allows a determination of wa (M), the chain composition distribu-
tion when all other parameters on its right-hand side are measured by differential
refractometry. Once wa (M ) is known, we are ready to compute v(M ) from Eq. (79),
fw(M) from Eq. (82), and finally M,,.

Figure 1.8 shows two typical apparent molar mass distributions determined from
G(D)s by Eq. (81) for the low-mass (0) and high-mass ({J) segmented copolymers
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Figure 1.8 Apparent weight distributions calculated from the translational diffusion coef-
ficient distributions corresponding to low-mass (O) and high-mass (CJ) copoly-
mer segmented poly(ethylene terephthalate-co-caprolactone) (PET-PCL) con-
taining 13% PET in tetrahydrofuran (THF) at 25°C.
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Figure 1.9 Estimate of the chain composition distributions for low mass (O) and high
mass ((J) 13% PET-PCL samples.

made of ethylene terephthalate and caprolactone (PET-PCL) in tetrahydrofuran
(THF) at 25°C. The overall PET contents of the two copolymers are the same: 13%.
Repeating the measurements on these samples in another solvent chloroform leads
to a new set of G(D)s, which allows Eq. (73) to be used to calculate wpgr(M).
Figure 1.9 shows the results for the low-mass (O) and high-mass (0J)13% PET-
PCL samples. We see that the PET content increases as M for M < ~ 4 x 10* and
approaches a constant value of 14% in the high-molar-mass range. For the 58%
PET-PCL sample, the composition distribution is nearly constant. The composition
of the high-molar-mass 13% PET-PCL sample overlaps with that of the low-mass
13% PET-PCL sample in the same molar mass range. This indirectly indicates that
the estimation of the composition distribution is reasonable. The lower content of
PET in the low-molar-mass range was attributed to the two-step synthesis [43, 44].

1.4.3 INVESTIGATION OF AGGREGATION

A combination of static and dynamic LLS is also useful in the study of the aggre-
gation process in solution. If a mixture is made of individual polymer chains and
polymer clusters (or aggregates), the measurement of static LLS will lead to an
apparent weight-average molar mass M,, qpp, Which is expressed by

Mw,app = My, LxL + My yxu (34)

where the subscripts L and H denote low-molar-mass linear polymer chains and
high-molar-mass polymer clusters, respectively, and x;, and xy are their weight
fractions with xp +xy=1. If the linear chains and clusters are significantly
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Figure 1.10 Translational diffusion coefficient distributions G (D) of a simulated polymer
mixture at two scattering angles: 14° (O) and 17° (O). The mixture contains
two polystyrene standards of distinctly different weight average molar masses
(3.0 x 10° and 5.9 x 10° g/mol) and a high-mass polystyrene.

different in the hydrodynamic size, dynamic LLS will detect two distinct peaks
in the measured G (D), with one peak corresponding to the linear chains and the
other to clusters.

Figure 1.10 shows G(D) of a simulated polymer mixture at two scattering
angles: 14° (0) and 17° (O). The mixture consists of two polystyrene standards
having distinctly different weight-average molar masses (3.0 x 10° and 5.9 x 10°
g/mol), and the high-mass polystyrene is used to simulate the polymer cluster [45].
The area ratio A, of the two peaks is expressed by

Dy
G (D)dD
ﬂ_[) (D) _ Muon

An /GH(D)dD My v

Dy

A=

(85)

with Dy being the cutoff translational diffusion coefficient between G (D) and
G (D). In practice, the values of A; at finite scattering angles must be extrapo-
lated to K — 0. On the basis of Egs. (84) and (85), one can use M,, opp and A,
respectively, from static and dynamic LLS, to calculate My, 1 x;, and My, yxy. In
principle, by knowing any one of the four parameters (My, 1., My 1, XL, and xy),
one should be able to determine the remaining three parameters. This method has
been thoroughly tested with mixtures of polystyrene standards by Wu et al. [45].
As for a particular polymer mixture, we should find a way allowing determination
of one of the four parameters. For example, in the study of polymer association, we
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can determine the M,, 1 of starting individual polymer chains, and in the study of
the gelation process, we can use a filtration method to remove large microgels, and
thus the weight fractions of x; and xy can subsequently be determined. This method
has been used to characterize novel thermoplastic polymers with phenolphthalein
in their backbone chains by Wu et al. [46].

1.44 STUDY OF POLYMER ADSORPTION ON COLLOIDS

Besides the particle sizing, a combination of static and dynamic LLS can provide
much more information on the study of colloids, such as particle structures, the
thickness of the adsorbed surfactant or polymer layer, and the formation of nanopar-
ticles, as demonstrated by Li er al., Wu, and Wu et al. [47-49]. Recently, Gao et
al., Wu and Chan, and Wu er al. [50-52] used a combination of static and dynamic
LLS results to determine the density of polymer particles. The following outline of
the method illustrates how a combination of static and dynamic LLS as a powerful
analytical tool can be used to investigate more sophisticated colloidal problems.

For a colloidal particle of uniform density, its molar mass M is proportional to
the cubic of its radius R, i.e., M = (4/3)m R} pN,, where p is the particle density
and Na the Avogadro constant. D is related to Ry through the Stokes—Einstein
equation. In general, R, > R, and thus one can write down R, =R + b with b
being the thickness of the solvated layer. Therefore,

kT
D=F<—8——>(4npNA)]/3M'/3 (86)
67N

with

F= ! (87)

4dmpNy 173
1+b
(%)

Comparing Eq. (86) with Eq. (56) and considering » < R, one finds approximately
a=1/3andkp = F(kgT /6 n)(4mpN4)'/?. Thus, with M in Eq. (87) replaced by
M,,, it follows from Eq. (58) that

3 00
M, = : (4””NA><KBT) // G(D)D*dD
[1+b(drpNa/ M) 3 67 n 0

(88)

This equation contains two unknown parameters (b and p), and if we know one
of them, the other can be calculated from M, and G(D). With this idea, Wu et al.
[53] found that the average density of the polystyrene microspheres made of a few



1. Light Scattering 33

uncross-linked chains is slightly lower than that of bulk polystyrene or conventional
polystyrene latex.

1.4.5 STRUCTURES AND DYNAMICS OF POLYMER GELS

There are two difterent ways of using LLS to study polymer gels. One is the study of
strongly scattering probes (usually uniform latex spheres) in a weakly scattering gel
network [54], and the other is to study the polymer gel network itself directly [55]. In
static LLS, Debye and Bueche [56] showed that on the basis of Eq. (12), the angular
dependence of the average scattered intensity can lead to the mean-square average

2

local dielectric constant fluctuations ({c*)) and the correlation length (£) through

87 (g?)8?
Ro(K)= ——222
) (1 + K282) )

where p(r) in Eq. (12) has been defined by

(if;) = exp(—;;) (90)

with ¢; and ¢, being the local dielectric constant fluctuations in volume elements 1
and 2, respectively. Equation (89) shows that (¢?) and & can be calculated from the
Rayleigh ratio by plotting (R,,(K))~'/? versus K2. Figure 1.11 shows how & and
(¢?) change in the gelation process of the epoxy polymerization of 1,4-butanediol
diglycidyl ether with cis-cyclohexane-dicarboxylic anhydride with different cat-
alyst concentrations [57]. The Figure reveals that a lower catalyst concentration

pr) = (

results in a smaller value of (¢?) and a larger extension of local optical inhomo-
geneties, suggesting that at lower catalyst concentrations, each polymer molecule
has more chance to grow bigger before it reacts with other polymer molecules.
It also shows that two different rates are associated with the characteristic length
increases with time. By combining this observation with the results from dynamic
LLS, Wu et al. [58] proposed a four-step reaction process that led to a better
understanding of the structure formation in the epoxy polymerization.

However, if the scattering elements are unable to diffuse throughout the medium
during dynamic LLS measurements, the time-averaged intensity—intensity correla-
tion function will not be equal to the ensemble-averaged intensity—-intensity corre-
fation function but will correspond to a subensemble-averaged intensity—intensity
correlation function. Pusey and van Megen [55] have made a fundamental study
on this topic and provided methods to study gels or glasses using a time-averaged
intensity—intensity correlation function from a single dynamic LLS measure-
ment. Shibayama [59] has summarized how to use dynamic LLS to study spatial
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Figure 1.11 (a) Correlation length (¢) of local optical inhomogeneties versus reaction
time ¢ and (b) mean-square average local dielectric constant fluctuation (n?)
versus reaction time ¢ at three different catalyst concentrations (0.1, 0.3 and
0.6%) but the same molar ratio of DGEB:CH = 1:2 at 8§0°C.

inhomogeneity and dynamic fluctuations of polymer gels in his feature article. The

basic principle is outlined as follows.

In the gelation process, the inhomogeneity is gradually frozen inside the gel,
resulting in a drastic increase and a sample position-dependence of the scattered
intensity. By changing the gel position (e.g., rotating the gel), we can observe a
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speckle pattern, and these speckles can be used to detect the gelation point [60, 61].
Owing to the nonuniformity of the intensity of the scattered light over the sample
position, the gel was referred to as a “nonergodic medium.” It has been argued that,
strictly speaking, the gel should be called a “restricted ergodic medium” because
each point in a gel has its own free-energy minimum [59]. The scattered electric
field E(k, t) from a gel consists of a fluctuating component Eg(k, ) and a time-
independent background Ec(k, t), which is a constant for a given sample position.
By relating the field—field time correlation function | gr(\}})a( K, t)| with the amplitude
5 of the Brownian excursion along the scattering vector K, one has

Dnek?
Iggé(K, t)] = exp{—Kz((SZ)[l — exp( _ 1:2]?52;)“ 1

where the subscript NE is used to address the nonergodic medium. In general,
the diffusion coefficient D and the density—density correlation function of the gel
network g(r) are related by

kgT /
D :/ g(r)ydr /g(r)dr (92)
6mnr

It has been shown by de Gennes [33] that a gel in its swelling equilibrium and a
semidilute solution have the same spatial correlation function, i.e.,

g(r) « § exp(— 1) (93)
r §

By substituting Eq. (91) into Eq. (90), one has D =kgT/67né. In Eq. (91), if
K2(8%) — o0, |g\n(K, )] — exp(—DngK>t), as we discussed before for Browni-
an particles free in solution. Pusey and van Megen [55] showed that for a gel, the
intensity—intensity time correlation function can be written as

2 2
GP(K, /A =1+ Y {[gw(K, D] — [gw(K, )]}

+2Y(1 - N{[ga(K. 0] — [gan (K. 00)]} (94)

where Y is the ratio of the assembly-average-scattered intensity (/)g over the time-

average-scattered intensity (I)7. From the measured G?(K, t)/ A, we can obtain

the initial decay rate I' [= D K?] with D, being the apparent diffusion coefficient
and the initial amplitude o} by

1.0
Da = —z5limon{[GP(K. 1)/A] - 1} ©2)

of = [GP(K,0)/A] -1 (96)
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where D, is related to Dng by

oj
Dng = — Dax 97)
Y
It is worth noting that the estimate of Dng is a function of K because both (712 and
Y are dependent on K. For a highly inhomogeneous system (i.e., very small in
(8%), one has to use a larger K (i.e., K> > 2/(8%)), to ensure a reasonable value of
of Dng [55]. On the other hand, if using the partial heterodyne approach proposed
by Joosten et al. [62], we have

GOK, /A =1+ X*[gii (K. 0] +2X(1 = X)gh(K, 1) (98)

where X is the ratio of the time-average-scattered intensity of the ﬂuctuating part
(Ig(K))1 over the time-average total scattered intensity (/(K))r, and g (K 1),
associated with the relevant dynamic component of the density fluctuations of the
gel network, is defined as

o (ErK. OELK.0).  (Ex(K,0EL(K, 1),

) = = exp(—DprK?t) (99
ST = (B (K OER(K.0)),  (Bn(K. OB(K. 1), 0 Pirkin - 09)

Note that for the fluctuating part of the scattered light intensity, the assembly and
time averages are equal. The relationship between Dyr, Da, and Dyg is given

by
H A X X NE

The equation shows that (I(K))t/Da = (2/Dyr){I(K))1 — (Ie(K))1/Dyr.

Figure 1.12 shows a typical (/)r-dependence of D4 for a poly(N-isopropyl-
acrylamide-co-acrylic acid) gel at 20°C. The solid line shows a fitting of Eq. (100).
The insert shows a plot on the basis of (I)r/Da = (2/D){(I)r — (I)g)r/D from
which D and (Ig)T were estimated. Fang and Brown [63] modified the partial
heterodyne method by introducing a correction of the instrumental coherence
factor 8, and thus Eq. (98) can be rewritten as

GOK, 0)/A =14 BR g (K.0)]" + 28R — R)glii(K, 1) (101)

where R =1—(1—o}/B)"/. This method leads to the diffusion coefficient Dyrg.
Another approach is the homodyne method, very similar to Eq. (36), in which the
time-independent background intensity B is simply taken as a coherent constant
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Figure 1.12 (I)¢-dependence of D4 for a poly(N-isopropylacrylamide-co-acrylic acid)
gel at 20°C. The solid line shows a fitting of Eq. (90). The insert shows a plot
on the basis of (I)t/Dp = (2/D){I)r — (Ig)t/D from which D and (/g)r
were estimated.

intensity, i.e.,
GO(K,1)/A =1+ B[gUNK, 1)+ B] (102)

which results in another diffusion coefficient Dyy. The four types of diffusion
coefficients are related to each other by

DN[{ . Dn'r . Dn']‘ﬁ . DHM = (2 - Y) . (2 — X) . (2 - R) . (1 + B) (103)

Shibayama [59] studied swelling and shrinking kinetics of chemically cross-linked
poly(vinyl alcohol) gels and found that the collective diffusion coefficient D¢ of a
shrinking gel is close to Dng:, whereas D¢ of a swelling gel is similar to Dyr, or in
other words Dyt and Dyg are, respectively, more suitable parameters to describe
the swollen and shrunken gels. It should be noted that a full understanding of the
physical meaning of these diffusion coefficients is still missing. The reader should
refer to the recent review article by Shibayama [59].
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1.5 Practice of Laser Light Scattering

An LLS spectrometer contains a limited number of components; namely, the light
source, the optics, the cell holder, and the detector. Nowadays, an LLS instrument
should have a digital output (single photon counting) from a fast photomultiplier;
i.e., the output current pulse has already been treated by a preamplifier—amplifier—
discriminator before it is connected to a time correlator, which is often a single
plug-in board to a PC computer.

1.5.1 LIGHT SOURCE

Traditionally, the light source is a helium—neon (He—Ne) laser with a wavelength
of 632.8 nm and an output power of 5-50 mW or an argon-ion (Ar™") laser with a
wavelength of 488 or 514.5 nm and an output power of 50—400 mW. Krypton lasers
have also been used because their wavelength can be longer than the 632.8 nm of
the He—Ne laser. The additional cost and somewhat short plasma tube life are
drawbacks. Recently, there has been a tendency to replace the gas lasers with
solid-state continuous wave (CW) lasers.

Specifically, we like to state that the frequency-doubled Nd—YAG laser (532 nm)
is a much better choice nowadays if one does not require two wavelengths in
experiments. In comparison with the gas lasers, (1) its beam diameter is ~5 times
smaller, making small scattering angles more easily accessible; (2) it is 1000
times more coherent; (3) it is 10 times more stable; (4) it has a much smaller
overall size; (5) it is air-cooled and uses plug-in electric power; and (6) most
important, its running cost is lower by a factor of about 5. It is expected that the
Nd-YAG laser will replace most of the Ar-ion lasers in LLS spectrometers within
the next few years. The manufacturers are starting to provide a new kind of solid-
state CW diode lasers in the visible (=670 nm) and near visible (780-830 nm)
range that are particularly useful in the study of conjugated polymer systems to
avoid the light adsorption.

The laser used in dynamic light scattering should have a TEMy, mode with
a Gaussian intensity profile so that it can be focused to produce a higher power
density for the incident beam, which leads to a smaller scattering volume and a
higher coherence factor in the optical mixing experiment. Many commercial laser
companies can produce stable laser light sources suitable for LLS experiments.
The reader should choose a laser with beam amplitude root-mean-square noises
less than 0.5%, so that the noise level of the intensity—intensity time correlation
function in dynamic LLS will not be affected, and a long-term amplitude stability
of better than £+1% for the convenience of time-averaged scattered light intensity
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measurements will be obtained. It should be noted that in dynamic LLS measure-
ments, long-term stability is usually not very important because the maximum
delay time is normally no more than a few minutes (typically less than 1 s).

1.5.2 OPTICS AND CELL DESIGN

It is well known that the laser light follows the Gaussian optics and that its beam
in the TEMgy mode has a Gaussian profile

i =i exp(—2r2/r§) (104)

where r is the radial distance from the laser cavity axis and i and i, are the beam
intensities at » and r =0, respectively. The beam intensity decays to 1/e* of its
maximum value at 7 = ry. The total intensity 7(r) on the cross-section 7r? is

r .0, 2
1(r) :/ 2ri(r)dr = ””0’0[1 - exp(-z—’;—)] (105)
0 2 r

0

The equation shows that ~87% of the light intensity falls in an aperture of 7r3. Ifa
laser beam is focused through an aperture by a lens, the diameter d, of the focused
spot will be ~1.22Af/ro with A and f being the wavelength of the laser light
and the focal length of the lens. If rp &~ 0.8 mm, A & 532 nm, and f =~ 300 mm,
dy; ~0.25 mm and the incident beam divergence (d;/f) is less than 1 mrad, which
is sufficiently small and typical in a laser light-scattering spectrometer. A polarizer
may be placed in the light path before the incident beam strikes the sample cell
to define the polarization (normally vertical) of the incident beam. Nowadays, the
polarization ratio of lasers is usually better than 100:1, and the polarization of the
laser is well aligned. Therefore, the polarizer is really not necessary.

The design of the conventional sample cell holder in LLS has become common
knowledge. The cell holder normally consists of a hollow cylindrical brass block
with an outside diameter of 50—-80 mm and an inside diameter of 10-20 mm, which
matches the outside diameter of the scattering cell. The brass block is normally
placed inside a cylindrical optical glass cup filled with a refractive index matching
fluid (e.g., xylene, toluene, and silicone oil) whose refractive index is very close
to that of optical glass (*1.5) to reduce surface scattering and the curvature of
the scattering cell. A proper alignment of the optical path is normally judged by
the constant scattered intensity for benzene or toluene after scattering volume
correction by sin6 to within 1% (if the scattering volume is chosen by a slit) or
2% (if a small pinhole is used) over an angular range ~15-150°. In principle, the
scattering cell with an optical quality should be used. However, we found in practice
that a selected normal cylindrical sample vial can also be used as the scattering
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cell, which greatly reduces the experimental cost and makes the scattering cell
disposable.

On the other hand, if one is mainly interested in dynamic LLS experiments, a
rectangular cell can also be used or may even be preferred. It should also be noted
that the scattering volume (2200 x 300 x 300 um? or 0.02 L) is quite small,
and thus the scattering cell could have a very small physical dimension. Foord
et al. [64] have used a melting-point capillary with a microliter-solution volume
for time correlation function measurements even though it is difficult to use it for
measurements of angular dependence of time-averaged scattered intensity. The
scattering cell can also be a flow type (e.g., a flow prism cell has been developed
by Chu et al. [65]), which could offer not only small solution volume but also
in situ small angle light scattering measurements as a detector in combination
with other analytical separation techniques, such as GPC and electrophoresis.
Another challenge in polymer analysis is to characterize polymers soluble only at
high temperatures. A very important advancement is the design of a novel light-
scattering cell holder by Chu et al., Wu et al., and Wu [66—71]. The cell holder is
capable of operating at temperatures as high as 340°C and was first developed at
the State University of New York at Stony Brook. Later, this novel technique was
transferred to Du Pont and BASF.

Figure 1.13 is a schematic diagram of the high-temperature LLS spectrometer.
In it, a thermally controllable plate (13) used as a heat sink isolates the rotary
table (12) from the outer thermostat (3) by means of two sets of stainless steel
standoffs (14). The outer brass thermostat (3) is isolated from the room with 0.5-
in.-thick porous silicone rubber. This arrangement creates an oven that allows the
temperature to be kept easily in the 320-340°C range with temperature fluctuations

Figure 1.13 Schematic top and side views of the high-temperature thermostat and detec-
tion system of the light scattering spectrometer: (1) silicon rubber insula-
tion; (2) heating wires for the brass thermostats; (3) outer brass thermostat
with fluid circulation facilities; (4) vacuum glass jacket for thermal isolation
made of precision-polished glass of 2.25-in. outer diameter with Kovar seals
at both ends of a stainless steel temperature shield with precision-polished
glass of 2.25-in. outer diameter; (5) inner brass thermostat, which has a
separate temperature controller and a thermometer and can accommodate a
light-scattering cell up to 27-mm outer diameter; (6) Glan—-Thompson polar-
izers; (7) fluid circulation paths; (8) lens; (9) field aperture; (10) optical-fiber
bundle; (11) rotating plate for multiple detectors; (12) RT-200 Klinger rotary
table with 0.01° step size; (13) cooling plate to isolate the outer thermostat
from the rotary table; and (14) stainless steel standoffs for thermal isolation.
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of less than 0.2°C. A glass (vacuum) jacket of 2.25-in outer diameter isolates
the inner thermostat from the oven. The vacuum jacket reduces the temperature
gradient in the light-scattering cell. The inner thermostat has a separate temperature
controller and a miniature platinum resistance thermometer that can be connected
to a digital voltmeter through the vacuum jacket by means of ceramic feed-through.
With this design, short-term (20 min) control of £0.05°C, intermediate-term (60
min) control of £0.1°C, and long-term control of £0.5°C can be achieved at 340°C
even in the absence of a vacuum. Long-term temperature stability depends partially
on room temperature fluctuations even in the presence of the outer thermostat and
the isolation between the two thermostats. Figure 1.14 shows typical temperature
fluctuations of the inner thermostat at 340°C. In addition, a high-temperature LLS
detector coupled with GPC has recently been developed, and the determination of
the molar mass distribution of poly(phenylene sulphide) in 1-chloro-naphthalene
at220°C has been made possible [36]. The advantage of on-line coupling LLS with
GPC is obvious, for GPC is a fractionation method, and LLS allows an absolute
molar mass measurement and hence makes the calibration of GPC columns.

It has to be stated that the optics together with the cell design in LLS are
undergoing a drastic change because of the development of optical-fiber technology
[72-75]. Figure 1.15 shows that a fiber-optic detector probe comprising an optical-
fiber (single-mode) and a graded index microlens can form an integral part of the
scattering cell. In this cell-detector probe design, the probes can eliminate the need
for a goniometer, which is often one of the bulkier components of the spectrometer.
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Figure 1.14 Typical temperature fluctuations in the inner thermostat at 340°C.
Intermediate-term (1 h) temperature fluctuations were +0.1°C. Long-term
(10 h) temperature fluctuations were +0.5°C.
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CT

Figure 1.15 Schematic of a typical fiber-optic probe (SST) = matching piece of cylin-
drical stainless steel, SML = SELFOC microlens, SSF = stainless steel or
ceramic ferrule used for mounting the bare optical fiber, E = epoxy used
for holding fiber in ferrule, HT =heat shrink tubing, FC =fiber cable,
CT = SMA type-II male connector). Dy and A6 are the effective detector
aperture and divergence angle, respectively.

Moreover, the probe can be in contact with the solution or dispersion so that the
requirement of a transparent window in the sample chamber can be relaxed.

1.5.3 DETECTORS AND DETECTION

Commercially available standard photomultiplier tubes (PMTs) with low dark
count (<30 Hz) and short after-pulsing are normally used to count the photons.
When an He-Ne laser light source is used, an S-20 photocathode is preferable
because of its higher sensitivity in the red light. PMTs, such as EMI 9863 and
the new Hamamatsu miniature PMTs, are more suitable. For photon correlation in
dynamic LLS, a low dark count is required, and thus it is advisable to purchase the
PMT with a relatively smaller photocathode (typically, 2.54 mm in diameter). If
the laser light is in the blue and green range, PMTs with a bialkali photocathode are
better because they have a lower dark count at room temperatures. The EMI 9893
PMT with selected low dark count and short after-pulsing has been popular for
this purpose. The RCA C31034 PMT, which has a broad spectral response (300
800 nm), is good for the entire visible range, but it is more delicate and expensive.

The silicon avalanche photodiode is another new development and offers pro-
mise in making a miniature light-scattering apparatus. With a broad spectral re-
sponse, the silicon avalanche photodiodes are matched to the diode lasers to sim-
plify the LLS instrumentation—especially if it is combined with the fiber-optic
probe.

Figure 1.16 shows two commonly used configurations of the detection optics
between the scattering cell and the detector. It should be noted that in static LLS
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Figure 1.16 Two commonly used configurations of the detection optics for static and
dynamic laser light scattering, where /jxc is the incident light and f is the
focal length.

measurements, the first pinhole (P1) can be replaced by a slit so that the align-
ment will be easier, but it has to be switched back to pinhole for dynamic LLS
measurements, which makes simultaneous static and dynamic LLS measurements
impossible. In the A-configuration, the scattering volume is mainly determined by
the diameter dp; of P1 (or the slit width). The first pinhole should be as close as
possible to the cell so that the scattering volume will be well defined. However,
owing to the existence of the cell holder and index-matching cuvette, the first pin-
hole is normally 10-15 cm away from the scattering center. The second pinhole
is located exactly on the focal plane of the lens, and the opening angle of dp,/f
determines the uncertainty of the scattering angle Af. The coherent factor 8 in
Eq. (36) is mainly determined by the opening angle of dp,/L¢ but is also influ-
enced by dp,. In this design, the alignment will be easier, and the distance between
the cell and the detector can be very small. In practice, f ~ 10 cm, Ly~ 10 cm,
dp; 200400 um, and dp; ~ 100-200 pm.

In the B-configuration, Ly, L», and f have to be exactly related by 1/L; +
1/L, = 1/f; i.e., the scattering center and the second pinhole are located exactly
on the imaging planes of the lens. The scattering volume is precisely determined
by dpy, and A6 is determined by the opening angle of dp;/L3. Therefore, the first
pinhole should be placed as close as possible to the lens, which is not difficult
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in practice. If L =L, =2f, one will have the so-called 2 f-2 f configuration;
i.e., one optically moves the second pinhole to the scattering center. The coherent
factor B is still determined by the opening angle of dp, /L. In this configuration,
f ~5-10 cm, which is smaller than the previous one. For a given dp,, the scattering
volume can be enlarged by a factor of L, /L, (normally, L,/L, < 3), so that one
can simultaneously have a higher scattered intensity, a larger B, and a smaller A6
for a given distance between the scattering center and the detector. However, the
alignment of the lens is more difficult but manageable. Therefore, this design is
preferred.

1.5.4 SAMPLE PREPARATION

If a macromolecule can be dissolved in more than one solvent, the choice of the
solvent for laser light-scattering measurement should be made generally according
to the following three criteria: (1) it should be colorless so that the absorption
correction can be avoided, (2) it should have a higher contrast, i.e., a higher value
of the specific refractive index increment dn/dC, so that the signal-to-noise ratio
is increased, and (3) it should be less polar and less viscous so that the solution
may be clarified more easily.

Sometimes in practice, we may have no choice of solvent for a given polymer. For
example, poly(1,4-phenyleneterephthalamide) (PPTA or Kevlar) is only soluble in
very strong acids that are viscous. In such a case, ultracentrifugation instead of
filtration has to be used to remove dust particles from the solution [16, 76]. As for
copolymers, the selection of proper solvents is even more difficult because at least
two solvents that satisfy the preceding three criteria are needed. For this reason,
reported characterization of copolymers is very limited [77-80].

As for polymers that are only soluble at high temperatures, the preparation
of polymer solutions for the LLS experiments is challenging. Finding a solvent
with a high boiling point is often not easy, but the dissolution of the polymers
and the clarification of the solution at high temperatures are even more difficult.
Chu and Wu and Chu ef al. [66, 69] have developed two different apparatuses that
can be used to prepare and clarify a polymer solution at temperatures higher than
200°C. Importantly, the two apparatuses are able (1) to dissolve a polymer under
an inert atmosphere without losing solvent or building up an inner pressure owing
to solvent evaporation, and (2) to transfer the solution into a filtration device by
remote control.

Figure 1.17 shows a specially designed dissolution and filtration apparatus that
can be placed inside a small oven. Known weights of a polymer sample and a
filtered solvent, as well as a small glass-enclosed magnetic stirrer, are placed in A
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filter

filtered N, gas

Figure 1.17 High-temperature dissolution and filtration apparatus. The entire apparatus
is placed in a high-temperature oven controlled at 250 £ 2°C. (A) Solution
vessel, where known weights of polymer and solvent as well as a small glass-
enclosed magnetic stirrer are introduced. (B) A fine-grade sintered glass
filter, connected to A and C by means of clean seal glass joints. (J) (14/20,
Wheaton Scientific). (f) Fine-grade sintered glass filter. (C) Cylindrical light
scattering cell of 27-mm outer diameter with a clean seal glass joint.
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at room temperature. The solution vessel (A) is then connected to the precleaned
filter (B). After degassing followed by introduction of nitrogen, both stopcocks are
closed, and the oven is heated to a desired temperature to dissolve the polymer while
the solution is stirred. When the polymer is considered to have been completely
dissolved, the solution vessel is turned 180° by means of the seal glass joint (J).
This allows the polymer solution to be transferred from A into B without exposure
to air. A gentle nitrogen pressure is applied to force the polymer solution to pass
the fine-grade sintered glass filter (f) and to move directly into the precleaned dust-
free cylindrical light scattering cell (C). In this way, dust-free polymer solutions
can be successfully prepared, keeping the temperature high.

Figure 1.18 shows another type of dissolution and filtration apparatus. Sleeve
A (with no bottom) is joined to the shaded stopper, which is connected to a reflux
condenser by means of a greaseless glass joint. Cup (B), with a magnetic stirrer
(E) sitting on top of the fine-grade sintered glass filter (F,), allows solution clarifi-
cation. First, a dust-free solvent and a polymer are placed in B of the argon-filled
apparatus, which has the preattached, dust-free light-scattering cell (D). The reflux
condenser flushed with argon is then inserted with care because the apparatus with
the polymer and solvent is under an inert atmosphere at room temperature. The
entire apparatus is set in a small oven, and the temperature is raised to a desired
value. When the polymer is completely dissolved, an argon pressure is applied
through the sintered glass filter (F;) to let the polymer solution move from B to
C. The additional pressure difference plus gravity will filter the polymer solution
directly into the dust-free light-scattering cell (D). After the filtration process is
completed, the additional argon pressure is released. The stopcock above the upper
filter is closed during the light-scattering experiment. Needless to say, extreme care
must be taken when the test solution is prepared and subjected to light-scattering
measurements at temperatures near the boiling point of the solvent because the
pressure buildup could cause an explosion. This condition points to the absolute
need for the pressure-releasing mechanism.

1.5.5 DIFFERENTIAL REFRACTOMETER

One of the most important parameters in static LLS is the specific refractive index
increment dn/dC, which is defined as lim¢_, ¢(dn/9C)r p, . Because this parame-
ter is not an intrinsic property of the polymer, the conditions of fixing temperature
T, pressure P, and wavelength of light in vacuum A are needed in its definition.
Note that, according to Egs. (7) and (32), an error of E% in dn/dC will lead to an
error of 2 E% in the derived M,,.
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The refractive index increment An of a polymer solution is usually measured
by using either a differential refractometer or an interferometer. In the former, the
light beam is refracted at the boundary between the sample and a reference liquid.
Commonly, the beam displacement is directly measured and then converted to
An after multiplying a calibrated constant, which is normally obtained by using a
solution with an accurately known refractive index difference An [81, 82]. This
method is not an absolute one because the constant has to be calibrated at the same
conditions as in the light-scattering measurements. In these measurements, two
light beams with identical geometrical paths traverse two different optical paths.
One passes through the sample and the other through the reference liquid. This
method relies on the interference of the two beams. Its details can be found else-
where [83, 84]. In a high-temperature LLS measurement, the conventional divided
differential refractometer cuvette had to be replaced by a deformed cylindrical
light-scattering cell in which the exit laser beam is refracted by the solution—air
interface [66].

Figure 1.19a schematically shows a novel differential refractometer that was
first designed by Wu et al. [85] and later commercialized by ALV GmbH, Langen,
Germany. A small pinhole (P) with a diameter of 400 pum is illuminated with
a laser light. The illuminated pinhole is imaged to a position-sensitive detector

Figure 1.18 Separate components of a high-temperature dissolution and filtration appa-
ratus. The assembled apparatus is placed in a high-temperature oven. (A)
Cylindrical insert (without bottom) with a diameter ~2 mm less than that of
the solution vessel (B). (C) Filtration section with a fine-grade sintered glass
filter (F;) and ground glass joints to a light scattering cell (D) and a ground
glass joint adapter for the water-cooled condenser, which is located outside
the temperature-controlled oven. (E) Magnetic stirring bar. Shaded area de-
notes volume reduction so that the volume accessible by vapor phase is no
more than a few times the fluid phase. The miniature water-cooled condenser
has a coarse-grade sintered glass filter (F») so that the entire system is always
isolated from external dust. The greaseless stopcock above F, is for operat-
ing the apparatus as a closed system; for introducing low vacuum to degas
the solvent before dissolution; for filling the apparatus with inert gas, such
as argon, to alleviate chemical decomposition; and for releasing a possible
pressure buildup at high temperature if chemical decomposition takes place.
The entire apparatus is portable and can be inserted into the high-temperature
light-scattering spectrometer with the light-scattering cell (D) and part of the
filtration component (C) controlled at a given high temperature.
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Figure 1.19 (a) Schematic view of a novel differential refractometer (commercialized by
ALV GmbH, Langen, Germany), which consists of a pinhole (P), a differential
refractometer cuvette (C), a lens (L, f =10 c¢cm), and a position-sensitive
detector (PD). All components are rigidly mounted on a 40-cm-long optical
rail. (b) Light path in which one compartment of the cuvette contains a solvent
with refractive index » and the other contains a solution with slightly different
refractive index n = ny + An. The cuvette and angles 6’, 6”, and 6" (actually
very small, ~0.01 radian) are enlarged to make the light path distinct.

(PD) (Hamamatsu S 3932) by a lens (L) located at an equal distance from the pin-
hole and the detector, where the distance is four times the focal length
(f =100 mm) of the lens. Thus, this novel refractometer uses a (2 /-2 f) design
instead of the conventional (1 f) design, which uses parallel incident light beams
and makes the distance between the detector and the lens equal to only one focal
length. A temperature-controlled refractometer cuvette (C) (Hellma 590.049-QS)
is placed just in front of the lens. It is a flow cell and has a volume of ~20 mL,
which is divided by a glass plate at ~45° into two compartments. The pinhole,
the cuvette, the lens, and the detector are rigidly mounted on a small optical rail.
The refractometer has dimensions of only 40 cm in length, 15 cm in width, and
10 cm in height, and the length can easily be reduced to 20 cm with another lens if
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necessary. The output voltage (—10 to 10 volts) from the position-sensitive detec-
tor is proportional to the displacement of the light spot from the center of the
detector and can be measured by a digital voltmeter or an analog-to-digital data
acquisition system and a personal computer.

Figure 1.19b shows the basic principle and the light path of the refractometer,
where 6, 8”, 0", and the cuvette are drawn enlarged to make the details clearer. If
both compartments are filled with a solvent (i.e., n = ng), the illuminated pinhole
will be imaged at point O. However, if the solvent in one of the compartments is
replaced by a dilute polymer solution with a slightly different refractive index (i.e.,
n =ng+ An), the light will be bent first by the glass plate, then by the cuvette wall,
and finally by the lens. The image is shifted away from the point O by a distance
of Y. Figure 1.19b shows that

Y=Y+ Yo+ Ys=ctan(0) + 2f — X —c)tan(0’) + 2 f tan(®”)  (106)
and
ftan(@’) = ftan(@”) + ctan(@) + 2f — X — ¢)tan(d’) (107)
where ¢, X, and 6 are constants. Snell’s law gives
1o sin(90 — 0) = (ng + An)sin(90° — 6 — 0) (108)
and
(no + An)sin(0) = sin(@”) (109)

where 0, 6, and 6" are actually so small because An is on the order of 10~ refrac-
tive index units that we may set sin(¢) =6, sin(¢’) =8’, tan() =40, tan(0’) =6,
and tan(f”) = 6”. Combining Eqs. (106—109) leads to

Y = KAn (110)

where K = [X + ¢”(1 — 1/n¢)] tan(90° — ). For a given optical setup and solvent,
X, ¢, 0, np, and hence K are constants. Equation (110) shows that the signal is
proportional to An, and the larger the value of X, the higher the sensitivity (Y /An)
is. This means that the cuvette should be placed as close as possible to the lens in
the experimental setup.

In the 2 f-2 f design, the detector and the pinhole (acting as a light source) are
placed at the exact imaging positions along the optical axis of the lens. This con-
figuration is optically equivalent to placing the detector directly behind the pinhole
so that the laser beam drift is eliminated. In comparison with the conventional dif-
ferential refractometer, this novel design has made the measurement of An much
easier and provides reliable and accurate values for dn/d C because it is stable and
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Figure 1.20 Concentration dependence of the refractive index difference (An) between
the polymer solution and solvent for a 13% PET-PCL copolymer. The lines
represent the least-square fits to the measured data.

the results can be recorded and averaged on a computer. Figure 1.20 shows the
concentration dependence of An for a 13% PET-PCL copolymer in three different
solvents. The lines represent the least-square fits to the data points.

The refractometer with its present dimensions can easily be installed into any
existing laser light-scattering spectrometer together with the laser source, the
thermostat, and the computer, as exemplified in Figure 1.21. The optical glass

Incorporation of a differential refractometer
with a laser light-scattering spectrometer

(" N
X U

Figure 1.21 Possible arrangement of the novel differential refractometer with an existing
laser light-scattering spectrometer.
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plate placed in the laser light path at 45° reflects laser light by about 4%, and the
reflected light is used as the light source. With this design, the light scattering and
the refractive index increment can simultaneously be measured under identical
experimental conditions of wavelength and temperature. The details of this novel
spectrometer have been described elsewhere [85].

In summary, this chapter has shown that static and dynamic laser light scat-
tering (LLS) combined provide a very powerful method for polymer characteri-
zation. LLS has advantages over other polymer characterization methods, which
include ultracentrifugation and chromatography, in such features as speed, nonper-
turbation, and extreme dissolution conditions (high temperature or strong acid).
The most important factor is that the calibration is independent of a particular
LLS instrument used. However, the LLS method for the determination of mass
distributions described in this chapter has its limitations in that its resolution is not
as high as the fractionation methods, especially for samples whose mass distribu-
tions have closely packed peaks. The LLS method should play a useful role when
polymers intractable by conventional characterization methods have to be treated.
Finally, dynamic LLS can be used with other characterization methods that take
advantage of the dependence of the hydrodynamic volume on molar mass.
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