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Abstract 

Laser light scattering (LLS), especially dynamic laser light scat- 
tering (DLS), also known as photon correlation spectroscopy 
(PCS), is a well established method for particle size distribution 
analysis. It usually involves a Laplace inversion of the field 
autocorrelation function. However, the resolution is limited 
because of the ill-conditioned nature of this Laplace inversion. 
No unique solution exists when noise is present on the data. In 
contrast with this ill-conditioned nature, the angular depen- 
dence of scattered (static) intensities is precisely not ill-condi- 
tioned, which allows the resolution of the ill-conditioned inver- 
sion of DLS data to be improved. In order to characterize 
samples with more complicated size distributions, an intensity- 

constrained multi-angle PCS data analysis program has been 
developed, which is an alternative way of normalizing the field 
correlation function to that reported by Cummins and Staples 
[12]. In this program, the field autocorrelation function is nor- 
malized to the scattering intensity by using a predetermined 
coherent factor at each angle, which provides an additional con- 
straint on the Laplace inversion of multi-angle PCS data 
analysis. The alternative analysis improves the resolution of 
PCS and provides a more reliable particle size distribution than 
single-angle data analysis. Both simulated and measured LLS 
data are used to illustrate its application, resolution and limita- 
tions. 

1 Introduction 

Laser light scattering (LLS, including both static and dynamic 
light scattering), especially dynamic light scattering (DLS), also 
known as photon correlation spectroscopy (PCS) or as quasi- 
elastic light scattering (QELS), is a well established method for 
particle size distribution analysis. In particular, the method is 
widely used to characterize the particle size distribution in the 
submicrometre range and to monitor association and dissocia- 
tion processes, such as aggregation, microemulsion and crystal- 
lization processes. 
Dynamic light scattering data analysis usually involves a 
Laplace inversion of the field autocorrelation function. The 
development of the Laplace inversion analysis for particle size 
distributions from DLS data has become an active area of 
research in the last 20 years. Various analysis procedures [l-111, 
such as cumulants, bimodal, non-negative non-linear least- 
squares, histograms and exponential sampling, have been 
developed. Many of them have been used successfully to 
characterize polymer and colloid systems in terms of molecular 
weight distribution or particle size distribution. 
However, the resolution is limited because of the ill-conditioned 
nature of this Laplace inversion. No unique solution exists when 
noise is present on the data. Two regularization methods, maxi- 
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mum entropy 191 and minimum of curvature (as in the CON- 
TIN program [3]), have mostly been used to approach this pro- 
blem. In contrast to this ill-conditioned nature, the angular 
dependence of scattered (static) intensities is precisely not ill- 
conditioned, which allows the resolution of the ill-conditioned 
inversion of dynamic light scattering data to be improved. In the 
past, much effort have been spent on the development of an 
analysis procedure that can produce a more constrained and less 
arbitrary solution. 
Recently, the analysis of multi-angle photon correlation spectra 
has attracted some attention [12]. This analysis puts both inten- 
sities and photon correlation functions at two or more scatter- 
ing angles into the Laplace inversion, wherein the intensity scat- 
tered by each species is normalized by the intensity scattered by 
the same species at a particular angle. This additional informa- 
tion supplied by the scattered intensities at different scattering 
angles provides a very severe constraint on the range of possible 
solutions. A resolution can be achieved that is unobtainable by 
using a single-angle data analysis. 
In order to characterize samples with more complicated size 
distributions, such as bimodal or even trimodal, an intensity-con- 
strained multi-angle photon correlation spectroscopic data ana- 
lysis program based on the above multi-angle analysis principle 
has been developed to characterize particle size distributions, 
wherein the intercept of the field correlation function is nor- 
malized to the intensity obtained from static light scattering by 
using the predetermined coherent factor so that the calculated 
correlation function at each angle is proportional to the measu- 
red one with an identical proportional constant for all scattering 
angles, which is an alternative way of normalizing the field cor- 
relation function to that reported by Cummins and Staples [12]. 

0 VCH Verlagsgesellschaft mbH, D-69469 Weinheim, 1994 0934-0866/94/0204-0145 $5.00 + .25/0 



146 Part. Part. Syst. Charact. I1 (1994) 145-149 

This program has been tested with both simulated photon cor- 
relation functions and mixtures of narrowly distributed stan- 
dard latex samples. In this paper, in addition to illustrating its 
basic principles, we use several tested examples to discuss the 
application, resolution and limitations of the program. 

2 Basic Principle 

From a photon correlation spectrometer, an intensity-intensity 
autocorrelation function (G(’)(nAs, 0)  = <I(O, 0 )  . Z * ( ~ A T ,  
0)  >) is measured. Following the assumptions that the optical 
field possesses Gaussian statistics, the measured autocorrela- 
tion function can be assumed to characterize purely diffusive 
processes. Therefore, the following relationship is valid : 

G%AT, e) = ~ [ i  + p ( e ) l g ( I ) ( n A ~ ,  e)12j (1) 

where A, g(’)(nAs, e ) [ =  <E(o, e) . ~ * ( n A r ,  e) >I,  e, A t  
and p(0) are the measured baseline, the normalized field 
autocorrelation function, the scattering angle, sample time and 
the coherent factor depending only on the optical design of 
the instrument, respectively. It should be pointed out that 
n (1 5 n 5 M )  represents the channel number, where M is the 
total channel number of the correlator. However, for a general 
case, it is not necessary to have n as an integral number, i. e. nAr 
should be written as delay time, t. For a polydisperse system, 
g(’)(nAt, 0 )  takes the form 

where G(T(0))  represents the line-width (r) distribution. If the 
particles are isotropic and non-interacting and number-density 
fluctuations are insignificant, can be related to the trans- 
lational diffusion coefficient, D, through r = DK2, where 
K (scattering vector) = 4 m2, [sin(W2)] /A and ns, 0 and A are 
the solvent refractive index, the scattering angle and wave- 
length, respectively. D can be further related to the particle dia- 
meter, d, by using the well known Stokes-Einstein equation: 
d = kBT/(3 zqD). The line-width distribution can be con- 
verted, for homogeneous spherical particles, into the particle 
number distribution, N(d), by the application of appropriate 
Mie coefficients [13] : 

G ( r ( 6 ) )  dT= N(d) . i(0, d, np) dr (3) 

where np and i(0, d, np) are the refractive index of the particle 
and the scattered light intensity at angle 0, respectively. 
i(0, d, n,) can be calculated according to the Mie theory [13] 
for a homogeneous sphere with a given set of 8, d and np. 
The Laplace inversion of the measured p I g(’)(nAs, 0)  I to N ( d )  
belongs to a class of ill-conditioned problem. No unique solution 
exists because noise is always present on the measured data. The 
validity of G(ZJ orN(d) by using such a transformation is depen- 
dent on both noise in the measured correlation functions and 
scattering intensities. Therefore, the calculated G (r) or N(d) has 
to be justified in terms of the real particle size distribution, not 
only in terms of the fitting quality. In principle, with more addi- 
tional information to constrain the analysis, the resulting 
distribution would be more reliable. Unfortunately, most of the 
time, there is no additional information available about the parti- 
cle size distribution of a measured sample. 
In practice, the measured G ( ’ ) ( n h ~ ,  0)  is “normalized” by 
either a calculated or a measured baseline, i.e. (I(@>’ or A, 

respectively, which implicitly assumes that the optical field 
possesses Gaussian statistics. Normally, the normalized correla- 
tion function, C(nA.t, O), is in the form 

c ( n a t ,  e) = p(e) ( g ( I ) ( n h t ,  e)(’ = [ G ( ~ ) ( ~ A T ,  e) - A ] / A  . (4) 

Figure 1 shows a typical measured “normalized” C(nAr,  0)  of 
a latex dispersion, which is a mixture of three narrowly distri- 
buted latexes where the diameters (volume ratios) are 90 nm 
(~OYO), 312 nm (20%) and 490 nm (10%). As seen in Figure 1, 
the intercept of C(nAr,  8) at t -+ 0 (or n = 0) is not 1, but - 0.4. 

0.4 

0.3 

0.2 

0.1 

t I I I 

0 0.5 1 .o 1.5 

t / rnsec 
Fig. 1 : mpical measured “normalized” intensity-intensity time cor- 
relation function C(nA7, e) of a latex dispersion, which is a mixture 
of three narrowly distributed latexes (d,  = 90 nm, d, = 312 nm, 
d3 = 490 nm with a volume ratio of Y(d , )  : V(d2) : V(d3)  = 7 : 2: 1). 

In our instrument, an intercept of 0.8 can be reached. However, 
in order to compromise both static and dynamic light scatter- 
ing we chose a relatively larger pinhole, which is why the intercept 
is around 0.4. This value is typical for a laser light scattering spec- 
trometer which is designed for both static and dynamic LLS 
measurements without changing the optical set-up. C(nAt ,  0)  
collected at different scattering angles will have different in- 
tercepts P(e) when t -+ 0 (or n = 0) and different “residual7’ 
baselines when t (or n) + 03. To our knowledge, the intercept is 
taken as a fitting parameter in all single-angle dynamic light scat- 
tering data analysis programs, such as cumulants, bimodal, non- 
negative non-linear least-squares, histograms, exponential 
sampling, CONTIN and MSVD (single-value decomposition) 
[I - 111. It is well known that for a broadly distributed sample the 
value of the intercept is not a very well defined parameter. For ex- 
ample, it depends on the ratio of the sample time to the average 
relaxation time. However, in contrast, the coherent factor p(S) 
depends only on the optical arrangement of a given LLS spec- 
trometer. Theoretically, only for a monodisperse sample, the in- 
tercept equals p(0). Therefore, in practice, by measuring C(nAz,  
0)  of a very narrowly distributed latex sample and extrapolating 
such a measured C(nAr, 0)  to n = 0, i. e. C(0, O),  we are able to 
determine P(0)  at each scattering angle 0 and use these values 
later to normalize the measured C(nAr, 0). In such a way, we can 
fix one fitting parameter experimentally, which constrains our 
data analysis. 
If we are only considering a single angle, this normalization ob- 
viously removes any explicit information regarding the intensity 
variation with scattering angle. However, when two or more 
angles are involved, the relative intensity change should be 
preserved after the normalization. In order to constrain the 
Laplace inversion of Eq. (2) with as much of the measured infor- 
mation as possible, the following multi-angle analysis principle 
is applied. If the LLS experiment is carried out at several 
scattering angles (el, O,, ..., O,), our object is to find a proper 
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particle size distribution (N(d ) )  satisfying the following equa- 
tion: 

D M W  

= C i(ej, d, n,) N ( d ) e  - r ( e j ) n A z  dd (5 )  
j=1 n=O 0 

where (Z(Oj)), C ( ~ A T ,  Oj) and p(Oj) are experimental data and 
i(0, d, n,) er(ej)nAr for each given set of d, 0, and n, can be 
calculated. It should be emphasized that n (i. e. t )  starts from 0 
in Eq. (9, which means that not only correlation functions but 
also the scattered intensities are used in our Laplace inversion. 
Hence, in principle, our analysis should be more constrained in 
comparison with the other data analysis methods where 
C(0, Bj) is only a floating parameter. Eq. ( 5 )  is discretized by 
approximating the integral in Eq. (2) with a summation. dd (or 
more strictly Ad) as a constant can be absorbed into N(d) .  
In logarithmic space, dd = dd [In(d)]. Therefore, icej, d, n,) 
exp(-r(Oj)  AT) has to be multiplied by d. d[ ln (d ) ] )  (or 
A [[n (d)]) as a constant in logarithmic space can be absorbed in 
N(d) .  Eq. ( 5 )  can be rewritten in the following matrix form: 

, n = O t o M ,  j = l  t o p ]  where IZI [ = <I(6',)) 1 q"a"B:;oj 1 '', 
and 1x1 f = N(dj) ,  j 1 to kl ape vectors and 1 YI = [i(ej, dj) 
e-r(ej)nAT, n = 0 to M; j = 1 to p]  is one matrix with 
(rn + 1) p . kelements. The calculation of I XI is regularized by 
a second-order derivative operator which penalizes solutions for 
unwanted, non-physical or unrealistic features. The relative con- 
tribution of the regularizer to the data fit can be tuned by choos- 
ing different values of a multiplicative constant a, which depends 
on the noise level in the experimental data [4]. A computer pro- 
gram based on this principle has been developed in our laboratory 
by using Hunsons's least-squares calculation [14] where a non- 
negativity constraint is used. The program accepts data sets that 
are either equi- or logarithmic distant in time. The contribution 
of static and dynamic LLS data can be varied. It has been found 
that if we use only static LLS data (i. e., the scattering intensity), 
the result is very sensitive to the refractive index of the particles. 
In our present program, the initial particle size range was chosen 
and rejected manually. In principle, the selection of the size range 
can be done automatically. The program can be installed and run 
on a typical IBM/PC-AT 486 computer. The typical running time 
is -2  min. Here we have omitted the details of the computing 
program as it is not the key point in this paper. After obtaining 
N(d) ,  the volume or weight distribution can be calculated by 
assuming that particles are homogeneous spheres. 
In practice, G(2)(nA~, 6') and I(@ are typically measured at 
6- 10 scattering angles ranging from 30 O to 140 '. In general, for 
a broadly distributed sample with a diameter comparable to the 
laser wavelength, G ( , ) ( ~ A T ,  0) and Z(0) at more scattering 
angles are measured and used in the data analysis. 

3 Applications and Discussion 

3.1 Simulated Data 

Based on a number distribution function 

N ( d )  = 
d(d-d1) + d(d-dz) 

dl d2 
(7) 

time correlation functions and scattered intensities at eight dif- 
ferent scattering angles ranging from 30" to 100" without ad- 
ding artificial noise by choosing d, = 300 nm, d, = 500 nm, 
np  = 1.6, ns = 1.33 and a number ratio N(d,):N(d,)  = 1 : 1 for 
a logarithmically discretized size axis. These simulated data 
were analysed with our intensity-constrained multi-angle 
photon correlation spectroscopic (ICMPCS) program. 
Figure 2 shows six calculated number distributions with dif- 
ferent regularization factors a ranging from 1 0 - ~  to 
where the x- and y-axes are logarithmically and linearly spaced. 
It can be seen that the results are fairly stable in spite of the 
change in GL and the bimodal distribution is resolved with a 
number ratio of 1.00: 1.04 and two peaks located around the 
input values. This is expected and understandable because there 
no artificial noise was added in our simulated data, i.e. our 
simulated data are "perfect". Therefore, we have to use the real 
experimental data to verify the program. 

100 d (nm) 800 100 d (nm) 800 100 d (nm) 800 

100 d (nm) 800 100 d (nm) 800 100 d (nm) 8 0 0  

Fig. 2: Calculated number distributions of a simulated bimodal 
distribution (d, = 300 nm and d2 = 500 nm with a number ratio of 
N ( d , )  :N(d2)  = 50: SO), where seven scattering angles (20-110") were 
used. 

3.2 Experimental Data 

?hro types of latex mixtures were used in LLS experiments. 
Sample 1 was a mixture of two narrowly distributed latexes 
(d, = 90 nm, d 2 =  312 nm, n p =  1.6 and a volume ratio of 
V(d, ) :  V(d2) = 19: 1) and sample 2 was a mixture of three 
narrowly distributed latexes (d, = 90 nm, d2 = 312 nm, 
d3 = 490 nm, n, = 1.6 and V ( d l )  : V(d,) : V(d,) = 7 : 2 :l), where 
the uncertainty in the volume ratio was about 10%. The solu- 
tions were extremely diluted so that there was just enough inten- 
sity (- 10000 counts per second) for the measurement. 
A commercial LLS spectrometer (ALV/SP-86, Germany) was 
used. An argon ion laser (Coherent INNOVA 300, operated at 
488 nm) was used as the light source. The primary beam was 
vertically polarized. By placing a polarizer in front of the detec- 
tor, we measured only the vertically polarized scattered light. 
An ALV 3000 correlator with 240 linear channels was used to 
measure the intensity-intensity time correlation functions. All 
measurements were carried out at 25.0 f 0.1 "C. 
Figure 3 shows six volume distributions of sample 1, which 
were calculated from the measured LLS data by using our 
ICMPCS program with different regularization factors a rang- 
ing from to lo-'. As can be seen, this latex mixture has 
been resolved. The resulting bimodal distributions are fairly 
stable with two peaks located at - 90 nm and - 310 nm and an 
expected volume ratio of - 95 : 5 .  For comparison, we took the 
same experimental data as used in Figure 3, but used only one 
angle each time, to calculate the particle size distribution of this 
latex mixture. 
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43 d (nm) 800 43 d (nm) 800 43  d (nm) 800 

43  d (Nn) 800 43 d (nm) 800 4 3  d (nm) 800 

Fig. 3: Calculated volume distributions of a latex dispersion, which 
is a mixture of two narrowly distributed latexes (d, = 90 nm and 
d, = 312 nm with a volume ratio of Y(d , ) :  V(d,) = 95:5) where 
11 angles (40-90") were used. 

Figure 4 shows six particle size distributions calculated for dif- 
ferent scattering angles 0. As discussed in the previous section, 
single-angle data analysis will distort the particle size distribu- 
tion, which means that either it cannot resolve this bimodal 
latex mixture or it gives an incorrect volume ratio. The distor- 
tions can be clarly seen in Figure 4. In practice, six to nine scat- 
tering angles are mostly used in order to obtain an improved 
and stable particle size distribution. However, there is no 
general way to predict which combination of scattering angle is 
best for a given system. ;El ~~~~ IF:-- 
0 

43  d (nm) 950 43  d (nm) 950 43  d (nm) 950 

43 d (nm) 950 43 d (nlp) 950 43 d (nm) g50 

Fig. 4: Calculated volume distributions from the data in Figure 3, 
where only one scattering angle was used in each calculation. 

Figure 5 shows nine volume distributions of sample 2, which 
were also calculated from the measured LLS data by using our 
ICMPCS program with different regularization factors a rang- 
ing from to lo-'. As can be seen, the resulting trimodal 
distributions are fairly stable with three expected peak locations 
(-90 nm and -310 nm and -490 nm) and the expected 
volume ratio when a < However, when a > lo-', the 
resulting distributions are distorted. We also found that a two- 
angle analysis is unable to resolve this trimodal distribution, 
whereas a six-angle analysis does. 
In practice, there is always some kind of experimental noise in 
the measured correlation functions and the scattering inten- 
sities. The questions that have to be addressed are how we reject 
only noise, but not information, and which a should be chosen. 
If a is chosen too low, noise will influence the analysis, resulting 
in a false particle size distribution. If a is chosen too high, some 
valuable information will be lost and the real particle size 
distribution will be distorted, such as when a > in 
Figure 5. In order to increase the chance of finding a suitable 
a, we have applied four different criteria to make a judgement 
on the solution of N(d).  The first is calculated from the 

regularization (i. e. pure mathematical minimum), the second 
from the measured and calculated scattering intensities (i. e. the 
terms of n = 0 in Eq. (5 ) ) ,  the third from the measured and 
calculated intercept and the fourth from the measured and 
calculated /3(0). To choose the best solution, we weight the four 
criteria equally and choose an overall minimum of the four 
criteria in practice. In this way, we look for not only a best fit 
from the mathematical point of view, but also a best fit from 
the physical point of view, which is based on the measured scat- 
tering intensities, I (#) ,  and the experimentally determined 
coherent factors, /3 (0). ;m ~~~-~ ~~~1 
0 
43  d (nm) 800 43 d (nm) 800 43  d (nm) 800 

43 d (nm) 800 43 d (nm) 800  43 d (nm) 800 

43  d (nm) 800 43 d (nm) 800 43 d (nm) 800 

Fig. 5 :  Calculated volume distributions of a latex dispersion, which 
is a mixture of three narrowly distributed latexes (d,  = 90 nm, 
d2 = 312 nm and d3 = 490 nm with a volume ratio of V(d,):  V(d,) 
: V(d,) = 7 : 2 :1), where six angles (40-90 ") were used. 

4 Conclusions 

A method of analysis of intensity-constrained multi-angle 
photon correlation spectroscopic data has been developed, 
which is an alternative way of normalizing the field correlation 
function to that reported by Cummins and Staples [12]. The 
alternative analysis improves the resolution of photon correla- 
tion spectroscopy and provides a more reliable particle size 
distribution than single-angle data analysis: Therefore, LLS as 
a non-invasive and non-destructive analytical method is now 
more suitable for characterizing more broadly distributed 
samples. It has been shown that even trimodal distributions can 
be resolved as long as those modes are not too closely located 
and each mode contributes a comparable amount of scattered 
intensity. When the particle size ratio of the two modes is <2, 
it will be difficult to determine whether the distribution is 
monomodal or bimodal, especially if the two modes themselves 
are broadly distributed. There is no question that, if only in 
terms of resolution, photon correlation spectroscopy (PCS) will 
probably never reach the same level as fractionation methods 
such as ultracentrifugation and chromatography. However, PCS 
as a supplementary technique has many unique advantages in 
particle size analysis: it is non-destructive, relatively fast and 
adaptable for on-line measurements. 
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6 Symbols and Abbreviations 

d 
D 
DLS 
g(’)(nhz,6) 

particle diameter 
translational diffusion coefficient 
dynamic light scattering 
normalized electric field autocorrelation func- 
tion 
line-width distribution at 6 
intensity-intensity autocorrelation function 
scattered light intensity 
intensity-constraint multi-angle PCS 
scattering vector 
laser light scattering 
channel number 
refractive index of particle 
refractive index of solvent 
number distribution 
photon correlation spectroscopy 
quasi-elastic light scattering 
volume distribution 
regularization factors 
coherent factor at 6 
sample time 
line-width 
solvent viscosity 
scattering angle 
incident laser wavelength 
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