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Internal motions of linear chains and spherical microgels in dilute solution
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It is well known that for a flexible polymer chain in dilute solution, two different types of motions

mainly contribute: the translation motion of the centres of mass of individual polymer chains; and the

internal modes generated from the motions of segments with respect to the centre of mass of the chain.

During the past two decades, with the advances in light scattering instrumentation and sophisticated

methods of data analysis, both types of motions can be distinguished in experiments and utilized for

testing molecular theories of polymer chain dynamics in dilute solution. In this article, we first review

some previous experiments, in particular the dynamical properties of polystyrene (PS) and polyisoprene

(PIP) chains in good and theta (Q) solvents, and then our own results, including a comparative study of

the internal motions of poly(N-isopropylacryl-amide) (PNIPAM) linear chains and spherical microgels

under good solvent conditions. The final part of this article deals with how the solvent quality (the

solution temperature) affects the internal mobility of PNIPAM linear chains and microgels.
1. Introduction

The dynamics of flexible polymer chains in dilute solution is an

old and important problem in polymer physics.1–6 When a poly-

mer chain is flexible, it will not only move as one object but also

change its conformation all the time to obtain its most probable
aDepartment of Chemistry, The Chinese University of Hong Kong, Shatin,
N.T., Hong Kong
bThe Hefei National Laboratory of Physical Science at Microscale,
Department of Chem. Phys., The University of Science and Technology
of China, Hefei, Anhui, 230026, China

Zhuojun Dai

Zhuojun Dai was born in Xian,

Shanxi province of China in

1987. She received her B.S. in

polymer science and materials at

Zhejiang University in 2005.

Currently she is an M.Phil

candidate in the Chemistry

department of the Chinese

University of Hong Kong under

the supervision of Professor Chi

Wu. Her research interests

concentrate on the dynamics of

polymer solutions and gel

networks and development of

non-viral vectors for molecular

medicines.

This journal is ª The Royal Society of Chemistry 2011
distribution. These kinds of intrachain relaxations are referred to

as internal motions, in contrast with the center-of-mass diffusion,

which is also agitated by thermal energy.7 In both free-draining

and the non-draining models, internal motions of a polymer

chain can be revolved into a series of normal modes with

different frequencies.1,2 It has been shown that these internal

motions associated with the translational diffusion of flexible

polymer chains in dilute solution will add additional broadening

to the spectrum of the scattered light.8 Theoretical predictions of

the degree of this spectral broadening have been made on the

basis of the bead-and-spring dynamical models with or without
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considering the hydrodynamic interactions.3,8 Practically,

dynamic laser light scattering (LLS) is a powerful technique,

which detects not only the translational diffusion of the center of

mass of individual polymer chains in solution but also their

internal dynamics, provided that the average radius of gyration

(Rg) is comparable or larger than the reciprocal of the scattering

vector (q) or the wavelength of laser light used, where Rg (¼ <Rg
2

> z1/2) is the root-mean square Z-average radius of gyration and

q¼ (4pn/l0)sin(q/2) is the scattering vector with n, l0, and q being

the solvent refractive index, the wavelength in vacuum and

scattering angles, respectively.9–12

The well-known Rouse-Zimm (RZ) model has been intro-

duced to dynamic LLS analysis by a number of researchers,

including Pecora,3 and Dubois-Violette and de Gennes,13 on the

basis of the concept of dynamic structure factor, S(q,t). In

the region qRg� 1, the contribution to S(q,t) is mainly from the

translational diffusion of the center of mass of the polymer

chains. Therefore, S(q,t) takes a single exponential form if

polymer chains are monodisperse. On the other hand, when qRg

becomes larger than 1 and even for monodisperse polymer

chains, S(q,t) becomes multi-exponential owing to a visible

contribution from a series of internal motions.7 Due to the

advancements of digital instruments and sophisticated data-

analysis methods, these two types of relaxation processes can be

experimentally distinguished and utilized to test related molec-

ular theories of polymer chain dynamics in dilute solution.14–16

Separation of internal motions and translational motions has

been carried out by using the CONTIN method,17 the double

exponential or multiexponential fitting method,18 the histogram

method,19 and the discrete inversion method.20 The slowest mode

is usually attributed to the translational motion whilst faster ones

are assigned to internal relaxation modes which could be coupled

to the translational motions.

In the past 40 years, the internal motions of various linear and

flexible polymer chains in both good and Q solvents have been

systematically studied. For example, both static and dynamic

properties of polystyrene (PS), a typical representative model of

flexible chains, has been extensively studied in tetrahydrofuran
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(THF),21–23 toluene,24,25 benzene,26–28 and ethylbenzene (ETBZ).21

In recent years, armed with a new synthesis method,29 flexible

polymer chains with high molecular weight have been successfully

prepared, which makes the study of the internal motions in the

intermediate q region (qRg > 1, but ql < 1) easier, where l is the

length of a statistic segment. Besides PS, other flexible polymers

or polymers with different conformations were chosen as model

systems to qualitatively and quantitatively examine the internal

motions.30–32 Especially, we like to discuss the internal motions

of a well-studied thermally sensitive polymer, poly(N-iso-

propylacrylamide) (PNIPAM).33,34 Around its Q temperature

(�30.5 �C), the coil-to-globule transition of single chains and the

volume transition of microgels occur when the solvent quality of

water changes from good to poor as the solution temperature

increases; namely, such a solution has a lower critical solution

temperature (LCST). 15 years ago, we investigated the internal

motions of PNIPAM linear chains and spherical microgels at

lower temperatures (a good solvent condition).35 Recently, we

further studied how the solvent quality affects its internal motions

by alternating the solution temperature from 25 �C to 40 �C.

In this review, we will first outline the theoretical background

of the internal motions of polymer chains in dilute solution. After

briefly summarizing some of previous works in old literature, we

mainly focus on the results reported in the past 20 years.

1.1 Theoretical background of internal motions

When a polymer chain is treated as a combination of springs and

beads, its internal motions can be illustrated by how the motions

of the beads change the lengths and orientations of the springs,

which constantly reshape the chain conformation.7 Both Rouse

and Zimm deduced equations to describe this intrachain relax-

ation mode, separately in the draining and non-draining limits.1,2

Although Zimm’s consideration is much closer to the real situ-

ation, we still have to start with the deduction of the Rouse

model since it is the simplest version of the bead-spring model

and readily understood.

In the Rouse model, we assume that the chain has no excluded

volume and there is no hydrodynamic interaction among

different chains in the solution. In this model, the elastic forces

on the nth bead (n¼ 2, 3,., N� 1) are exerted by the two springs

that connect their adjacent beads. At the same time, the nth bead

receives a random force fn from the solvent molecules. Supposing

the spring force constant is ksp¼ 3kBT/b2, and introducing r0¼ r1

and rN + 1¼ rN, where b is the spring length and ri is the ith bead’s

position, we can write down the equation of motion for the nth

bead as follows.

z
drn

dt
¼ kspðrn�1 þ rnþ1 � 2rnÞ þ fnðtÞðn ¼ 1; 2:::NÞ (1)

where z is the friction coefficient of each bead in the solvent. In

eqn (1), the motions of each bead are correlated with others, which

makes the exact solution of the equation rather difficult. To make

the problem easier, normal coordinates are brought in, defined as

qiðtÞ ¼
1

N

XN

n¼1

cos
inp

N
rnðtÞ ði ¼ 0; 1:::Þ (2)

Here q0(t) represents the global motion of the chain, namely, the

translational diffusion. All the other normal modes correspond
This journal is ª The Royal Society of Chemistry 2011



to the internal motions. Furthermore, an inverse transformation

leads to rn as a combination of qi, i.e.,

rnðtÞ ¼ 2
XN�1

i¼1

cos
inp

N
qiðtÞþ q0ðtÞþ ð�1ÞnqNðtÞ ðn ¼ 1; 2:::N � 1Þ

(3)

A combination of eqn (1) and (3) results in

z
dqi

dt
¼ 1

N

XN

n¼1

cos
inp

N
z

drn

dt

¼ 1

N

XN

n¼1

cos
inp

N
fn þ ksp

1

N

XN

n¼1

cos
inp

N
ðrn�1 þ rnþ1 � 2rnÞ

¼ 1

N

XN

n¼1

cos
inp

N
fn � ksp

ip

N

� �2

qi

(4)

where the friction coefficient zi for ith mode is introduced for the

convenience of later discussion. When i ¼ 0, zi equals to Nz and

in other case 2Nz. Therefore, eqn (4) becomes

zi

dqi

dt
¼ �kiqi þ gi (5)

with ki and gi, respectively, presented as

ki ¼ ksp

zi

z

�
ip

N

�2

¼ 6p2kBT

Nb2
i2 (6)

giðtÞ ¼
zi

z

1

N

XN

n¼1

cos
inp

N
fnðtÞ (7)

It clearly shows that the equation of motion for qi depends on

itself only, with the relaxation time si defined as zi/ki

dqi

dt
¼ � 1

si

qi þ
1

zi

gi ði ¼ 0; 1:::Þ (8)

While in the Zimm model, the hydrodynamic interactions

among different beads are taken into account. In this case, the

velocity of one bead affects all the other beads through the flow of

solvent molecules. Zimm considered different hydrodynamic

situations in both Q and good solvents and derived the diffusion

coefficient and relaxation time for each internal mode. In general,

the longest intrachain relaxation time s1 can be expressed as

s1 ¼ Mh0[h]/A1RT (9)

where M is the molecular weight of the chain, [h] and h0 are the

intrinsic and solvent viscosities, respectively, R is the gas

constant, and T is the absolute temperature. The values of

numerical factor A1 are 0.822, 1.184 and 0.573, respectively, for

the free-draining Rouse chain, the non-free-draining chain with

and without pre-averaged hydrodynamic interaction.36–38 In

principle, the relaxation time of the pth mode can be calculated

from the first mode by

sp ¼ s1/pa (10)

where the exponent a ¼ 2.0 and 1.5, respectively, for the free-

draining (Rouse model) and non-draining models with the

pre-averaged Oseen tensor. If the non-draining model is used
This journal is ª The Royal Society of Chemistry 2011
without the pre-averaged Oseen tensor, the calculated relaxation

times approximately increase by a factor of 2 in comparison

with that obtained after the pre-averaging.39 Later, both the

Rouse and Zimm model were introduced into the theory of the

quasi-elastic spectrum, which enables us to interpret those

experimentally measured internal motions.

When a coherent and monochromatic laser beam hits a dilute

solution of linear flexible polymer chains without any adsorp-

tion, the scattered light has a spectral distribution, S(q,u), due to

the translational diffusion and internal motions, as follows40

S(q,u) ¼ (1/2p)
Ð

e�iute�q2D|t|S(q,t)dt (11)

where u is the angular frequency difference between the scattered

and the incident light; D is the translational diffusion coefficient

of individual chains; and S(q,t) is generally expressed as

Sðq; tÞ ¼
*�

1=N2Þ
XN

l¼0

XN

m¼0

e�iq$
�
rlð0Þ � rmðtÞ

�+
(12)

due to interference of the scattered light from different segments

within a long polymer chain made of N such segments, where rl(0)

is the position of the lth segment at time 0 and rm(t) is the position

of the mth segment at time t. The reference point is the center of

mass of the chain. Therefore, all the spatial and temporal infor-

mation related to intrachain, or called internal motions, is

incorporated. Note that in a sufficiently diluted polymer solution,

the interchain interference can be practically ignored. By incor-

porating the Oseen-Kirkwood-Riseman hydrodynamic interac-

tion into the bead-and-spring model for a linear flexible polymer

chain, Perico, Piaggio, and Cuniberti (PPC) have shown that the

ensemble average in S(q,u) is formulated as,41,42

Sðq;uÞ ¼ P0ðxÞLðw; q2DÞ þ
XN

a¼1

P1ðx;aÞLðu; q2Dþ GaÞþ

XN

a¼1

XN

b¼1

P2ðx;a; bÞLðu; q2Dþ Ga þ GbÞþ

XN

a¼1

XN

b¼1

XN

g¼1

P3ðx;a; b;gÞLðu; q2Dþ Ga þ Gb þ GgÞ þ.

(13)

where x is defined as (qRg)2, and L(u,G) is a frequency

u-normalized Lorentzian distribution, centered at the frequency

(uo) of the incident light, with G the line-width at the half-height;

and Pn (n ¼ 0, 1, .), the intensity contribution of each Lor-

entzian to the line-width distribution G(G). The zeroth-order

P0(x) represents the contribution from the translational diffu-

sion; P1(x,a), the first-order contribution from the ath internal

mode; P1(x,a,b), the second-order contribution from both the

ath and bth internal modes; and so on. At a relatively low

scattering angle, i.e., x� 1, the observation length (1/q) is much

larger than the chain size so that each chain can be viewed as

a point without any internal structure; namely, Pn (n $ 1)

diminishes and S(q,u) only contains the first term. As x increases,

1/q gradually decreases so that the light begins to probe into

segments of the chain, Pn(n $ 1) begins to contribute to S(q,u)

and the higher-order terms become more and more important.
Soft Matter, 2011, 7, 4111–4121 | 4113



In the study of the internal motions, the first cumulant U(q),

defined as the initial slope of S(q,t), is also an important

parameter. As shown by de Gennes and Dubois-Violette on the

basis of the Rouse-Zimm (RZ) spring-bead model, U(q) is

q2-dependent when qRg � 1; and becomes q3-dependent in an

intermediate range of q.43,44 As x further increases, the reduced

first cumulant U*, defined as U(q)/(kBTq3/h0), gradually

decreases and finally approaches a plateau value,6,45,46 where h0,

kB and T are the solvent viscosity, the Boltzmann constant and

the absolute solution temperature, respectively.
1.2 Laser light scattering

In polymer and colloid science, laser light scattering is often

referred to static (elastic) or dynamic (quasi-elastic) LLS. Static

LLS as a classical and absolute analytical method measures the

angular distribution of the excess absolute time-average scattered

light intensity, known as the excess Rayleigh ratio Rvv(q).

At infinite dilution and the zero scattering angle (q / 0), the

weight-average molar mass (Mw) is related to Rvv(q) by�
KC

RvvðqÞ

�
z

1

Mw

ð1þ 1

3
\R2

g.q2Þ þ 2A2C (14)

where K ¼ 4p2n2(dn/dC)2/(NAl0
4) with NA is the Avogadro

number, dn/dC is the specific refractive index increment, <Rg
2> is

the square average radius of gyration; and A2 is the second virial

coefficient. On the other hand, in dynamic LLS, we measure the

intensity fluctuation of the scattered light. Since the internal

motions are mainly studied by dynamic LLS so that we detail its

quasi-elastic nature as follows.

When the incident light is scattered by moving macromole-

cules or particles, the detected frequency of the scattered light

will be slightly higher or lower than that of the incident light

owing to the well-known Doppler effect, depending on whether

the particle moves towards or away from the detector. Therefore,

the resultant frequency distribution of the scattered light is

slightly broader than that of the incident light. Quantitatively,

the incident light has a frequency of �1015 Hz; while the

broadening is only �105–107 Hz, depending on how fast the

scattering objects move inside the solution. Therefore, it is very

difficult to directly detect such a small broadening (�106/1015) in

the frequency domain. However, it can be effectively recorded in

the time domain through a time autocorrelation function,

G(2)(q,t), i.e., the intensity-intensity time correlation function,

defined as <I(q,0)I(q,t)>/<I(q)>2 in the self-beating or homodyne

mode, where t is the delay time and <I(q)> is the time-average

scattering intensity. Each measured G(2)(q,t) can be related to

a normalized electric field-field time correlation function g(1)(q,t)

by the Siegert relation as

G(2)(q,t) ¼ A[1 + B |g(1)(q,t)|2] (15)

where A is a baseline; 0 # B # 1, a spatial coherent constant

depending only on the instrumental detection optics. The value

of B actually reflects the signal-to-noise ratio of a dynamic light-

scattering experiment. g(1)(q,t) is proportional to S(q,t) and

related to the characteristic line-width distribution G(G) by
4114 | Soft Matter, 2011, 7, 4111–4121
gð1Þðq; tÞ ¼
ðN

0

GðGÞe�GtdG (16)

where G(G)dG is the statistic (intensity) weight of the scattering

objects (particles or macromolecules) which possess a line-width

G. For a dilute solution, G measured at a finite scattering angle is

related to C and q by:

G ¼ q2D(1 + kdC)(1 + fq2 < R2
g > z) (17)

where D is the translational diffusion coefficient of the solute

molecule at C / 0, kd is the diffusion second viral coefficient,

and f is a dimensionless parameter depending on polymer chain

structure and solvent (for polymers with flexible chains in a good

solvent, f is between 0.1 and 0.2). Therefore, when C� 1 and qRg

< 1, D x G/q2. In other words, for narrowly distributed polymer

chains or spherical colloidal particles in a dilute solution or

dispersion at x � 1, G(G) can be converted into a pure trans-

lational diffusion coefficient distribution G(D) by D ¼ G/q2 or

further to a hydrodynamic radius distribution f(Rh) by using the

Stokes-Einstein equation.

Rh ¼
kBT

6pDhS

(18)

However, as the scattering angle increases, i.e., when 1/q is

comparable to the size of a flexible scattering object, one has to

consider the internal relaxation processes because light probes

the motions inside these larger ‘‘particles’’ and their contribu-

tions to G(G) become more and more important. The coexistence

of the translational relaxation and internal motions can be

analyzed by the following double exponential equation.			gð1ÞðsÞ			 ¼ AD expð�GDsÞ þ AI expð�GIsÞ (19)

where A and G are the intensity weighting and the characteristic

delay rate of the relaxation, respectively; subscripts ‘‘D’’ and ‘‘I’’

denote the diffusion and internal modes. Note that AD + AI ¼ 1.

This fitting enables us to obtain few characteristic parameters

related to the internal motions, including the longest relaxation

time and the first cumulant. For monodispersed polymer chains

at infinite dilution, g(1)(s) is theoretically expressed as

|g(1)(s)| ¼ P0(x)exp(�q2D0s) + P1(x)exp[�(q2D0 + 2s�1
1 )s]+.(20)

where D0 is the translational diffusion coefficient, s1 is the longest

intrachain relaxation time, and the expansion coefficients Pi(x)

obeys

P(x) ¼ P0(x) + P1(x) +. ¼ (2/x2)(e�x � 1 + x) (21)

A combination of them with the double exponential analysis

leads to the following equation with a collective intrachain

relaxation time sc.

|g(1)s)| ¼ ADexp(�q2Ds) + AIexp[�(q2D + 2s�1
c )s] (22)

A comparison of eqn (19) and (22) shows that

GD ¼ Dq2 (23)

GI � GD ¼ 2/sc (24)
This journal is ª The Royal Society of Chemistry 2011



It is clear that sc contains the contributions from all the

internal modes and becomes s1 only when qRg approaches zero.

On the other hand, the first cumulant can be calculated on the

basis of the double exponential method. The first cumulant is

defined as47

U ¼ � lim
s/0

d
		gð1ÞðsÞ		
ds

¼ lim
s/0

ðN

0

GGðGÞexpð�GsÞdG ¼ Ge

(25)

Ge is named as the effective decay rate, identical to the first

cumulant. Using eqn (19), we have

U ¼ Ge ¼ ADGD + AIGI (26)

In our laboratory, a modified commercial LLS spectrometer

(ALV/DLS/SLS-5022F) equipped with a multi-s digital time

correlator (ALV5000) and a cylindrical 22 mW UNIPHASE

He-Ne laser (l0 ¼ 632 nm) was used. The incident beam was

vertically polarized with respect to the scattering plane and the

intensity was regulated with a beam attenuator (Newport

M-925B) so that possible localized heating in the light scattering

cuvette is avoided. Note that the highest reachable scattering

angle in LLS spectrometers is practically limited to 160�.

2. Discussion

The dynamics of linear flexible chains in dilute solutions have

been studied extensively. Previous experimental data have been

accumulated mainly for polystyrene (PS) because it has long been

considered as a good model polymer of linear flexible chains.

Later on, other flexible polymers, such as polyisoprene (PIP) and

poly(N-isopropylacrylamide) (PNIPAM) were used. In the

following discussion, we first review the dynamical properties of

PS and PIP chains in good and Q solvents, and then turn to our

recent studies. In particular, the internal motions for PNIPAM

chains and spherical microgels at both good and Q solvents will

be discussed.

2.1 Internal motions of PS chains in dilute solution

The theoretical basis for interpreting dynamic LLS in dilute

polymer solution was given by Pecora, who showed that the

spectrum of the scattered light should consist of a pure trans-

lational diffusion as well as intramolecular relaxations. The

intensity weighting of the diffusive mode to the total scattered

intensity was predicted to depend uniquely on the parameter

x which equals (qRg)2. As shown and discussed in eqn (13), for

qRg � 1, only the pure translational mode contributes to the

S(q,t). However, in an intermediate range of qRg, S(q,t) is

composed of contributions from both translational diffusion and

internal motions. Following these theoretical considerations,

previous experimental studies were focused on interpretation of

the S(q,t) in the intermediate qRg region by appropriate extrap-

olation to infinite dilution and zero scattering angle in order to

obtain a value of s1, which is associated with the first mode or the

longest intrachain relaxation time of a given polymer solvent

system. The applied methods of analysis included double expo-

nential fits, histogram analysis, CONTIN,17 and MAXENT.48

For earlier experiments of PS in methyl ethylketone (marginal
This journal is ª The Royal Society of Chemistry 2011
solvent) and cyclohexane (Q solvent),49,11 the obtained s1 values

were in agreement with values estimated from the free-draining

Rouse model. However, later studies on the same systems yielded

s1 values in agreement with the non-draining Zimm

prediction.50–52 The conflicting results were attributed to the fact

that none of these initial studies were performed over a wide

range of concentrations and scattering angles, which facilitates

appropriate comparison of theory and experiment. Tsunashima

and coworkers45,46 have investigated dynamics of dilute solutions

of narrow-distribution PS in trans-decahydronaphthalene at the

Q temperature, and in good solvents, trans-decalin as well as

benzene over a wide range of qRg by means of dynamic LLS.

They found that the deduced s1 values, in each case, to be

quantitatively described by non-draining Zimm model.

However, the contribution of the translation diffusion motion

relative to that of all molecular motions showed substantial

differences in good and Q solvent systems because of the varied

strengths of the hydrodynamic interactions. Bhatt and Jamie-

son53 have investigated the dynamic LLS properties of dilute

solutions of narrow distribution PS in tetrahydrofuran (THF)

and ethlybenzene (ETBZ) at 25 �C in the range 1 < qRg < 6. The

s1 values for PS in THF were similar to the values predicted by

a non-draining Gaussian chain model with preaveraged Oseen

hydrodynamic interaction, but data for the good solvent, ETBZ,

were not consistent with this theory. On the other hand, the s1

values for PS in ETBZ, corrected for solvent viscosity, were

approximately 50% larger than those obtained in THF. This

observation suggests inherent differences in the nature of the

internal chain dynamics in these two good solvent systems;

namely, there is a larger draining effect in the PS/ETBZ system.

The decrease in solvent draining in PS/THF was thus predicted

to lead to an enhanced contribution from internal motions.

Chu and coworkers54 have also presented an investigation of

internal motions of PS in benzene from the measured intensity

time correlation function by using a combination of a specially

designed low-angle LLS spectrometer with a prism cell and

a conventional wide-angle LLS spectrometer. They demonstrated

that, in addition to the longest internal relaxation time s1, the

second internal motion s2 could also be determined under

appropriate conditions. According to the existing theories for

a flexible polymer chain under both the free-draining and non-

draining limits, Perico et al.41 showed at x > 1, S(q,t) is dominated

by the first five relaxation processes, namely, a pure translational

diffusion term plus four principle internal motions. Therefore, at

x > 1, eqn (13) in the time domain can be rewritten as

Sðq; tÞ ¼ P0ðxÞe�Dq2t þ P1ðx; 1; 1Þe�ðDq2þ2G1Þtþ

P2ðx; 2Þe�ðDq2þG2Þt þ P3ðx; 1; 1; 1; 1Þe�ðDq2þ4G1Þtþ

P4ðx; 2; 2Þe�ðDq2þ2G2Þt þ.

(27)

where the numeric values of Pn in the range of 1 # x # 10 have

been calculated by PPC. Using Zimm model, we have

Gn ¼
0:293RTl

0

n

M½h�h0

(28)

where [h] and ln
0 are the intrinsic viscosity and the eigenvalues,

respectively. Normalized by Dq2 and converting q to x, we can

rewrite eqn (28) as
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Gn=ðDq2Þ ¼
0:293l

0

nRTR2
g

M½h�Dh0x2
(29)

Therefore, Gn/(Dq2) can be calculated from eqn (29) with the

known values of D, M, Rg, ln
0, h0, and [h]. By using the numeric

values of Pn reported by Perico et al.41 and the values of Gn

calculated from eqn (29), we are able to calculate the average line

width <G>int associated with the internal motions, i.e.,

\G.int ¼ ½
XN

a¼1

P1ðx;aÞðDq2 þ GaÞþ

XN

a¼1

XN

b¼1

P2ðx;a; bÞðDq2 þ Ga þ GbÞ þ :::�=½
XN

a¼1

P1ðx;aÞþ

XN

a¼1

XN

b¼1

P2ðx;a; bÞ þ :::�

(30)

Experimentally, Chu et al.54 successfully observed the first two

internal relaxation times, s1 and s2, at proper regimes of 1 < x <

3, and 3 < x < 6 respectively, for polymer chain at the non-free-

draining limit. One therefore may wonder that higher order

internal motions, such as s3, s4, and so on could also be detected

as x increases beyond the x range reported by them.

Some experiments by our group cast new light on this

problem.55 The S(q,t) from three high molecular weight PS

polymers (HPS-1, Mw ¼ 6.33 � 106 g mol�1; HPS-2, Mw ¼
9.80 � 106 g mol�1; HPS-3, Mw ¼ 16.4 � 106 g mol�1) in dilute

toluene solution were precisely studied by dynamic LLS over

a wide range of scattering angles (6–154�). Fig. 1 shows typical

plots of G(G/q2) versus G/q2 for HPS-2 in toluene at different

x values; the insert shows a �10 times enlargement of the second

(smaller) peak of the distribution in the range of 10�7–10�6 cm2/s.

At x < 1, as expected and discussed above, only one single and

narrow peak related to translational diffusion was observed. At

x� 1, a second peak with a higher G appears in G(G/q2), while the

first peak is basically unchanged in position and shape. This

second peak is related to the internal motions. At x > 1, the first

peak is getting broader and shifting to higher G. This is because
Fig. 1 Typical plot of G(G/q2) versus G/q2 for HPS-2 in toluene at 20 �C

and different x values wherein the inset shows a �10 enlargement of the

second peak of the distribution in the range of 10�7 – 10�6 cm2/s.

Reprinted with permission from ref. 55, (1995 American Chemical

Society).
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at higher x our LLS probe scale (q�1) is smaller than the chain

dimension (�Rg), so that the contribution from the translational

and internal motions are mixed in the measured spectrum which

resulted the broadening and shifting of the first peak. At x > 15,

the first and second peaks in G(G/q2) merge into a single and

broader distribution. This can be explained by the fact that the

line width (Dq2) associated with the pure translational diffusion

increases with x, but the line widths related to the internal

motions are independent of the scattering angle.

Fig.2 shows a plot of this Gpeak2/(Dq2) against x for HPS-1(B),

HPS-2(,), and HPS-3(O) in toluene at 20 �C, where Gpeak2 is

the average line width of the second peak in Fig. 1. For

comparison, the experimental data from Chu et al.54 (filled dia-

monds) and Kurata et al.46 (filled circles) were also plotted in

Fig. 2. Clearly, these data were in agreement with ours in the

comparable x values. According to the PPC’s theory and if eqn

(27) is right, Gpeak2/Dq2 calculated from the second peak of the

line-width distribution in Fig. 1 should follow the line of

<G>peak2/Dq2 versus x. However, the plot of <G>peak2/Dq2 versus

(the solid line) in Fig. 2 shows a clear deviation between the

experimental data and the calculation. On the other hand, Fig. 2

shows that the experimental data have a tendency to respectively

follow the dotted lines of n¼ 1 in 1 < x < 3; n¼ 2 in 3 < x < 6; n¼
3 in 6 < x < 10; and n ¼ 4 in 10 < x < 15. In other words, by

analyzing the Gpeak2/Dq2 in Fig. 2 with an assumption of Gpeak2/

Dq2 ¼ 1 + 2Gn/(Dq2), we were able to determine G1, G2, G3, G4 in

different ranges of x. For x > 15, the two peaks in Fig. 1 merge

into one, which makes it difficult for us to get a precise Gpeak2

value from the spectral distribution so that we stop our second-

peak analysis of these high x value data in order to avoid any

ambiguity. Furthermore, both Chu’s and our experimental data

clearly indicated that the internal motions associated with 2Gn,

i.e., Gn + Gn, dominate the relaxation process in different ranges

of x, where n is the order of the internal motion. On the basis of

eqn (13) and (27), this (Gn + Gn) relaxation implies a self-coupling

of the nth-order internal motion. We have no explanation why

only these kind of self-coupled internal motions were observed in

dynamic LLS. According to eqn (13), energetically, it is easier to

excite the internal motions associated with G1 and 4G1 than that

associated with 2G2. The fact that we observed 2G2 instead of G1

and 4G1 in the range of 3 < x < 6 might suggest that the ability of
Fig. 2 Plot of Gpeak2/(Dq2) versus x for HPS-1(B), HPS-2(,), and HPS-

3(O) in toluene at 20 �C where Gpeak2 is denoted the average line width of

the second peak. For comparison, we included the experimental data

from Chu et al. (filled diamonds) and Kurata et al. (filled circles).

Reprinted with permission from ref. 55 (1995 American Chemical

Society).

This journal is ª The Royal Society of Chemistry 2011



dynamic LLS to measure a certain kind of internal motion may

be related to the observation length scale, 1/q. In other words,

even though some energetically favorable internal motions exist,

we cannot ‘‘see’’ them in a certain range of x.

Akcasu et al.37 have developed another method for the inter-

pretation of dynamic LLS experiments over the entire accessible

q range in terms of the first cumulant U(q) of S(q,t) which is the

initial slope of S(q,t) and can be determined by the cumulant

analysis of S(q,t). The advantage is that this method is quite

useful for the test of various molecular modes which accounted

for the hydrodynamic interaction as well as the exclude volume

effect. Han and Akcasu have presented a systematic study in

which they explored the q dependence of the U(q) as a function of

PS molecular weight (from 106 to 107 g mol�1) in both good and

Q solvents, and compared their results to the theoretical

predictions.6 It was found that U(q) approaches q2 dependence

for qRg�1 and q3 dependence for qRg [ 1, with a broad

transition region. As qRg further increased, the reduced first

cumulant U*, defined as U(q)/(kBTq3/h0), gradually decreased

and finally approached a plateau value, where kB is the Boltz-

mann constant. This universal scaling of U* with q3 is consistent

with the non-free-draining bead-and-spring model for flexible

polymer chains in infinite dilute solution. On the basis of PS in Q

solvent cyclohexane, however, Han and Akcasu have reported

U* y 0.045, which was about 18% smaller than the theoretical

prediction; namely, 0.071 with preaveraged Oseen tensor and

0.079 without a preaveraged Ossen tensor.

Nemoto et al. pointed out that for precisely testing the theo-

ries, it is necessary to extrapolate the U(q) to infinite dilution and

zero scattering angle.46 After this treatment, for PS in the good

solvent, benzene, the obtained U* vaules were still 25% smaller

than the theoretical estimates. When it comes to PS in Q solvent,

trans-decahydronaphthalene, the difference between the experi-

mental value and the theoretical value reduced to about 15%.

They speculated that the established theory may overestimate the

amplitude of the internal modes, since theoretical prediction

assumed complete flexibility to the swollen polymer chains, while

the intramolecular relaxation are more or less depressed in

a swollen chains even in a good solvent. Fig. 3 shows our data in

a typical plot of the U(q)/(kBTq3/h0) versus x1/2 for PS in toluene

at 20 �C. The plateau value of U(q)/(kBTq3/h0) is around 0.05.

This consistent lower plateau value shows that, at larger x, there

exist some problems in the theoretically predicted G(G). For the
Fig. 3 Plot of U(q)/(kBTq3/h0) versus x1/2 for HPS-1(B), HPS-2(,), and

HPS-3(O) in toluene at 20 �C, where T is the absolute temperature, and

kB, the Boltzmann constant. Reprinted with permission from ref. 55

(1995 American Chemical Society).
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study of PS in good solvent, THF, Bhatt and Jamieson yielded

U* y 0.061, closer to the theoretical prediction.56 To rationalize

the discrepancy, they suggested the revision of the classical

theory by including phenomena such as internal friction, chain

rigidity, variations in the degree of draining, and hydrodynamic

screening.
2.2 Internal motions of PIP chains in dilute solution

In the late 1980s, Tsunashima et al. suggested using rubbery

polyisoprene (PIP) to study the dynamic properties of polymer

chains in dilute solution.57 They speculated that some parts of the

discrepancies between the experimental results and theoretical

predictions might derive from insufficient chain flexibility in PS

polymer. It has been found that PIP chains are fairly well

represented by the non-draining Gaussian chain model with

nonpreaveraged Oseen hydrodynamic interaction.43 However,

for PIP in Q solvent 1,4-dioxanea value of U* y0.048 has been

obtained, which is 20% smaller than the predicted value for a Q

system. The authors speculated about the reason for the devia-

tion due to the incompleteness of the theory. For PIP in cyclo-

hexane, a good solvent, they deduced U* y 0.06, larger than that

observed for PS, which was surprisingly in agreement with the

Akcasu-Gurol prediction for non-draining Gaussian chains

using non-preaveraged hydrodynamic interactions. Their results

partially confirmed that the source of deviations between

prediction and experiment for PS lies in its comparative

conformational rigidity.
2.3 Internal motions of PNIPAM chains in dilute solution

Poly(N-isopropylacrylamide) (PNIPAM) is a temperature

sensitive polymer with a lower critical solution temperature

(LCST) at about 32 �C. Below LCST, water is its good solvent

due to the hydrogen bond formed between the polymer and

water molecule. However, with the increasing temperature, the

hydrogen bond is destroyed and the water changes from a good

solvent to Q solvent and finally a bad solvent. During this

process, the PNIPAM chain will exhibit a swollen to shrunk

transition within a very narrow temperature range. In this

section, we will first examine the properties and change of

internal motion of PNIPAM chains in dilute solution under the

good solvent conditions.
Fig. 4 Typical line-width distributions G(G/q2) of the PNIPAM linear

chains at T ¼ 15.0 �C. The insert shows a tenfold enlargement of the

second peak in the range of 10�7 < G/q2 < 10�6 cm2/s. Reprinted with

permission from ref. 35, (1995 American Chemical Society).
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Fig. 6 Scattering-vector (angular) dependent time-average scattered

light intensity (Rayleigh ratio) of poly(N-isopropylacrylamide) linear

chains in water at three different temperatures. Reprinted with permis-

sion from ref. 60 (2010 American Chemical Society).
Fig. 4 shows typical plots of the line-width distributions

G(G/q2) versus G/q2 for individual PNIPAM linear chains (Mw �
1.21 � 107 g mol�1) at 15 �C and different x. Similar to PS

discussed in Fig. 1, at x < 1, there exists only a single peak related

to translational diffusion. As x increases further, the first peak

becomes broader and shifts to larger G/q2 because the observa-

tion length scale (1/q) is much smaller than Rg, and more internal

motions with larger G contribute to the relaxation and mix with

the translational diffusion in S(q,t). Finally, two peaks merge

into one broader peak and the diffusion motion and internal

motion can no longer be separated.

Fig. 5 shows a plot of Gpeak2/(Dq2) against x, where Gpeak2 is the

average line width of the second peak in Fig. 4. Experimental

data for polystyrene in toluene at 20 �C previously mentioned

(Fig. 2) are also shown in Fig. 5. It is clearly to see that the two

plots follow a similar pattern. The dotted lines in Fig. 5 show the

predicted [1 + Gn/(Dq2)] dependence on x for polystyrene in

toluene. Similar to the tendency of PS in good solvent toluene,

the data for PNIPAM in water respectively follow the dotted

lines of n ¼ 1 in 3 < x < 6; n ¼ 2 in 3 < x < 6; n ¼ 3 in 6 < x < 10;

and n ¼ 4 in 10 < x < 15. The analysis stops when x > 15 because

of the difficulty in separating the two peaks. Again, the estima-

tion of the G1 to G4 agrees well with the previous result, revealing

that internal motions associated with 2Gn, i.e., Gn + Gn, domi-

nates the relaxations measured in dynamic LLS in different

ranges of x. We suggested that some energetically favored

internal motion at the certain range of x could not be detected by

the dynamic LLS, resulting in this discrepancy between the

experimental result and theoretical prediction.

As discussed above, the employed PNIPAM chains can

undergo a coil-to-globule transition in response to external

stimuli by temperature. One might therefore wonder how the

internal motions are suppressed when the chains are shrinking.

To answer this question, internal motions of PNIPAM chains at

different solution temperatures are investigated. Fig. 6 shows

that the extrapolation of the time-average scattered light inten-

sity at different solution temperatures to the zero angle leads to

an identical value, i.e., there is no change in the weight-average

molar mass, but the scattered light intensity becomes much less

dependent on the scattering angle as the solution temperature

increases. On the basis of eqn (14), Fig. 6 clearly reveals the

collapse of individual chains as the solution temperature
Fig. 5 Plots of the reduced average line-width Gpeak2/(Dq2) versus x. (B)

PNIPAM linear chain in water at T¼ 15.0 �C; (O) polystyrene in toluene

at T ¼ 20.0 �C. The dashed line are predicated on Zimm’s non-draining

model. Reprinted with permission from ref. 35 (1995 American Chemical

Society).
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increases with no interchain association. Otherwise, we would see

an increase of the scattered light intensity at q ¼ 0 because the

scattered light intensity is proportional to the square of the mass

of a scattering object. Fig. 6 lays a solid ground for us to study

the internal motions of individual chains at different solution

temperatures, especially under the Q and poor solvent condi-

tions.60 On the other hand, Fig. 7 summarizes how the average

sizes of individual polymer chains vary with the solution

temperature, where the dash line marks the Q temperature and

the poor solvent region is on its right side. A comparison of the

chain sizes under the good (lower temperatures) and the poor

(higher temperatures) solvent conditions reveals that individual

chains do not shrink too much up to the Q temperature and the

collapse of individual PNIPAM chains occur within a very

narrow temperature window after passing the Q point. Fig. 7

enables us to calculate our experimentally reachable range of

x ¼ (qRg)2 at each solution temperature.

Fig. 8 shows how the Dq2-scaled line-width distribution

changes with the solution temperature for a given scattering

angle. It is important to point out that here it is the change of

<Rg> that varies x; and 1/q � 54 nm. The second peak related to

the internal motions becomes smaller and smaller as the solution

temperature increases. It is clear to see that as the solution

temperature increases beyond the Q temperature (�30.5 �C),

each chain in water dramatically shrinks and x decreases from

21.5 to 0.37 within the range 30.5–33.0 �C. In their fully collapsed

state (T � 33.0 �C, <Rg> �27 nm and x < 1), there is only one

diffusive relation and no internal motions appear. On the other
Fig. 7 Solution-temperature dependent average radius of gyration and

hydrodynamic radius of poly(N-isopropylacrylamide) linear chains in

water. Reprinted with permission from ref. 60 (2010 American Chemical

Society).
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Fig. 8 Solution-temperature dependent line-width distributions G[G/

(Dq2)] of poly(N-isopropylacrylamide) linear chains in water, where the

peak related to internal motions is enlarged by a factor of 50 times for

a better view. Reprinted with permission from ref. 60 (2010 American

Chemical Society).
hand, the decrease of the peak area (the contribution of the

internal motions to the line-width distribution) reflects the

suppression of internal motions as each chain shrinks. To our

knowledge, there has been no theory about such a decrease yet,

but it is physically reasonable; namely, as the chain collapses, it

becomes more and more difficult for the thermal energy (kBT) to

excite its internal motions.

To study it more quantitatively, we evaluate how the contri-

bution of internal motion changes during the transition process.

Fig. 9, shows the weighting (the ratio of the two peaks) of the

internal motion at different scattering angles varies with

temperature. In the good solvent region, AI/(AI + AD) essentially

remains a constant for each given scattering angle, revealing that

the slight shrinking of individual chains in this region has no

effect on its internal motions because each chain still remains

a random-coil conformation. When the solvent quality becomes

poorer, AI/(AI + AD) dramatically drops and the internal

motions disappear at temperatures higher than �32 �C at which

the chain collapsed. Surprisingly, at different scattering angles,

AI/(AI + AD) always turns near the Q temperature. Again, there

is no theory to predict such a turning point, but it is physically

reasonable. Namely, polymer chains are agitated by the thermal

energy, to undergo the internal motions they have to overcome

the entropic force in a good solvent because of the chain swelling

and the segment-segment interaction (enthalpy) in a poor
Fig. 9 Solution-temperature dependent area ratio AI/(AI + AD) of two

peaks, respectively, related to internal motions and diffusion of poly(N-

isopropyl-acrylamide) linear chains in water at different scattering angles,

where the dashed line marks the point at which internal motions are

completely suppressed. Reprinted with permission from ref. 60 (2010

American Chemical Society).
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solvent. At its ‘‘ideal’’ state, the entropic cost is balanced by the

enthalpy interaction.

To further illustrate why the internal motions of linear

PNIPAM chains disappear at higher temperatures, we plot the

temperature dependence of the ratio of the average radius of

gyration to the average hydrodynamic radius, as shown in

Fig. 10. <Rg>/<Rh> is a parameter that describes the chain

conformation. For linear flexible chains in good solvent and hard

spheres with a uniform density, both theoretical and experi-

mental studies have showed that <Rg>/<Rh> � 1.5 and � 0.77,

respectively.33 As expected, the change of <Rg>/<Rh> would

follow the dashed line in Fig. 10 and approach 0.77 when the

chain is fully collapsed. However, we have consistently observed

a dip (minimum) of <Rg>/<Rh> before the chain reaches its

globular state. Such a dip is related to the so-called molten

globular state in which many small loops are formed on the

periphery of a shrunk chain, as schematically shown in Fig. 10.

These small loops lead to a larger hydrodynamic size, but have

little effect on the radius of gyration because of their insignificant

masses, so that <Rg>/<Rh> < 0.774 predicted for a uniform non-

draining sphere. A combination of Fig. 9 and 10 clearly reveal

that the internal motions are still visible when <Rg>/<Rh> is still

in the dip but disappears after it reaches the plateau, supporting

our previously proposed concept of the molten globular state.58
2.4 Internal motions of spherical PNIPAM microgels in dilute

solution

Microgel particle is a cross-linked latex particle which is swollen

by a good solvent. PNIPAM microgels have attracted a lot of

attention due to its swollen to shrunk transition accompanied

with temperature change. Saunders and coworkers demonstrated

that a delicate balance between interactions favoring swelling of

microgel particles exists (e.g. salvation of the PNIPAM chains via

hydrogen bonding with water) and those responsible for collapse

(e.g. inter and intra-chain hydrogen bonding and elasticity of the

network).61 Utilizing the dynamic LLS, our group followed the

variation of internal motion with the change of solvent quality.

Fig. 11 shows how PNIPAM spherical microgel particles

shrink with increasing temperature. A comparison of Fig. 7 and

11 shows that the microgels collapse much less than the chains,

presumably due to the cross-linking that already prevents the
Fig. 10 Solution-temperature dependent ratio of average radius of

gyration and hydrodynamic radius of poly(N-isopropylacrylamide)

linear chains in water, where the dash line marks the Q temperature, and

the arrow points to the molten globule state, which is schematically

shown on the left. Reprinted with permission from ref. 60 (2010 Amer-

ican Chemical Society).
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Fig. 11 Dispersion-temperature dependent average hydrodynamic

radius of poly(N-isopropylacrylamide) spherical microgels in in water.

Reprinted with permission from ref. 60 (2010 American Chemical

Society).

Fig. 13 Dispersion-temperature dependent average chain density

(<r>chain) defined in terms of its hydrodynamic volume, and area ratio

AI/(AI + AD) of two peaks, respectively, related to internal motions and

diffusion of poly(N-isopropylacrylamide) spherical microgels in water at

two different scattering angles, where the dashed line marks the

temperature at which internal motions become the strongest and the

arrow points to the density when internal motions are completely sup-

pressed. Reprinted with permission from ref. 60 (2010 American Chem-

ical Society).
swollen of the gel network at lower temperatures. In addition,

Fig. 12 shows that in contrast to linear chains where internal

motions were observed at x � 1, the second peak related with the

internal motions of the microgels is much weak and appears only

when x $ 8 at 25.0 �C; namely, we can only observe their internal

motions when 1/q � 50 nm # <Rg>/3, instead of at 1/q � <Rg>,

implying that the thermal energy can excite the entire linear chain

with its longest normal mode, but only a small portion of a gel

network with a dimension of �50 nm. If imaging that the gel

network is made of small uniform meshes with a dimension of

�10 nm on the basis of the cross-linking density, we are able to

estimate that the internal motions only involve about �102 of

such meshes from the minimum 1/q. Note that such measured

internal motions are slower than the relaxation of the subchains

(‘‘blobs’’) of a macroscopic gel network with a similar cross-

linking density, but faster than the translational diffusion of

individual microgels in dispersion.

Fig. 13 reveals that AI/(AI + AD) initially increases as the

microgels shrink in the good solvent region, reflecting the

increase of the average chain density with the temperature.

Further increase of the temperature leads to a more and quick

collapse of the microgels as well as a sharp decrease of AI/(AI +

AD), starting at 32.5 �C that is two degrees higher than the Q

temperature of PNIPAM linear chains in water. At 37 �C, the

microgel approaches their fully collapsed state and AI/(AI + AD)

becomes zero, indicating complete suppression of the internal

motions. The increase of AI/(AI + AD) can be attributed to
Fig. 12 x-dependent q2-scaled line-width distributions G[G/(Dq2)] of

poly(N-isopropylacrylamide) spherical microgels in water, where the

peak related to internal motions is enlarged by a factor of 2,000 times for

a better view. Reprinted with permission from ref. 60 (2010 American

Chemical Society).
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a gradual decrease of the entropic elasticity (elastic module) of

the gel network because the microgel becomes ‘‘softer’’ when it

swells less as the dispersion approaches its Q temperature.

Following our previous argument that a polymer chain should

be most deformable at its ideal state; namely, the interaction

among its segments is balanced by that between solvent and

segment, we can mark this turning point of AI/(AI + AD) as the Q

temperature of the PNIPAM microgels in water. It has been

known that the volume phase transition of a gel network,

depending on whether it has a lower or upper critical solution

temperature (LCST or UCST), shifts to a higher or lower

temperature as the cross-linking density increases, i.e., the

average length of the sub-chains between two neighboring cross-

linking points decreases.59 For a PNIPAM gel network in water

with a LCST, the shift of its Q temperature from 30.5 �C to

32.5 �C is reasonable.34
3. Conclusion

The dynamics of flexible polymer chains in dilute solution, in

particular the internal motions for flexible linear polystyrene (PS)

and polyisoprene (PIP) chain in both good and Q solvent is

reviewed. It has been found that the first and second relaxation

time can be deduced using dynamic LLS, with the values closed

to the prediction of non-draining Zimm model. Moreover, the

relaxation time of the flexible polymer chains mainly depends on

the nature of chain dynamics in different solvents. To inter-

pretate the dynamic structure using first cumulant, generally

speaking, the trend of h0U(q)/kBTq3 dependence on qRg, that is q2

dependence for qRg � 1 and q3 dependence for qRg [ 1, is

consistent with the description of non-draining model and

reflects the flexible nature of the polymer chains. The trend has

been confirmed by experiments but the predicted plateau value is

always higher than those from experiments. Such a discrepancy

should lead to a revision of classical theory and construction of

new models and explanations. More factors like internal friction

and hydrodynamic screening are suggested to be included in the
This journal is ª The Royal Society of Chemistry 2011



model, while other speculations, such as the defect in detecting

some energetically favored internal motion by dynamic LLS are

also proposed.

In the past fifteen years, our group studied the internal

motions of temperature sensitive polymer, poly(N-iso-

propylacrylamide), including both chains and microgels. In good

solvent, we observe the internal motion at 1/q � Rg for linear

chain and 1/q � Rg/3 for microgel, indicating that the thermal

energy (kBT) is able to excite the entire linear chain but only part

of the microgel network with a dimension of �50 nm to undergo

the longest normal mode. The first cumulant study of both linear

chains and microgels lead to the finding that the internal motions

associated with 2Gn dominate the relaxation mode in dynamic

LLS in different x ranges. This discovery hints that some ener-

getically favorable internal mode may not be detected by

dynamic LLS in the specific x range.

As the solvent quality changes from Q to bad, the intensity of

internal motions weakens gradually due to the coil-to-globule

transition of linear chain or sub-chains inside the microgel

network, indicating overlapping of the chain suppresses the

internal motion in the semi and concentrated regions. We also

found that the contribution from internal motions makes

a turning around the Q temperature, presumably due to the

interaction among chain segments and among solvent molecules

and segments are balanced. This finding may lead a more conve-

nient way to estimate the Q temperature of polymer solution.
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