A Simple Scaling for the Core–Shell Nanostructure Formed by Self-Assembly of Block Copolymers in a Selective Solvent

Chi Wu* and Jun Gao†

Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, and The Open Laboratory of Bond-selection Chemistry, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China

Received February 25, 1999. Revised Manuscript Received October 18, 1999

Introduction

Polymeric core–shell nanostructure can be formed through the self-assembly of diblock or triblock copolymers in a selective solvent in which only one block is soluble. For example, poly(ethylene oxide)-b-poly(propylene oxide) (PEO-b-PPO) was one of the mostly studied block copolymers because at temperatures higher than ~20 °C the PPO block become insoluble in water. The self-assembly of the insoluble PPO blocks could result in a core–shell nanostructure with the PPO blocks as the core and the soluble PEO blocks as the shell. Such core–shell nanostructures have been experimentally confirmed by both dynamic laser light scattering and small-angle neutron scattering and attracted much attention both in theory and in practice.

Pioneered by de Gennes, different theories have been proposed to describe the formation of copolymeric micelles and to predict the size and the association number in terms of the lengths of both the blocks and the polymer chain. Thermodynamically, Noolandi et al. calculated the core/water interfacial energy and the shell nanostructures have been experimentally confirmed by both dynamic laser light scattering and small-angle neutron scattering and attracted much attention both in theory and in practice.

Pioneered by de Gennes, different theories have been proposed to describe the formation of copolymeric micelles and to predict the size and the association number in terms of the lengths of both the blocks and the polymer chain. Thermodynamically, Noolandi et al. calculated the core/water interfacial energy and the shell nanostructures have been experimentally confirmed by both dynamic laser light scattering and small-angle neutron scattering and attracted much attention both in theory and in practice.

Recently, we proposed and proved a simple structural model for the stabilization of colloidial particles; namely, for each given stable dispersion, the surface area occupied per stabilizer, which could be surfactant or ionic group or polymer chains, approaches a constant, independent of the particle size. Encouraged by the success of this structural model in the study of polymeric dispersion, we thought that for the core–shell nanostructure made of block copolymers, the surface area (s) occupied by each soluble block in the shell, which is also acted as a stabilizer, should also be a constant. For the polymeric micelle made of triblock copolymer PEO-b-PPO-b-PEO (EₙPₓEₙ), where m and n are the numbers of the repeating units of the soluble and insoluble blocks respectively, the radius of the core (Rₐ) was inversely proportional to m for a constant n, indicating a possible simple scaling for such a core–shell nanostructure. Enlightened by the similarity between the core–shell nanostructure and the adsorption of polymer chains on a nanoparticle, we proposed a simple scaling for the core–shell nanostructure as follows.

Basic Principle

Let us follow Noolandi’s notation, namely, the core has a radius of Rₐ, the shell has a thickness of δ, and

\[\rho_c \left(\frac{4}{3} \pi R_c^3 \right) \propto N_n \] (1)

where \(\rho_c \) is the density of the core. On the other hand, the surface area of the core (4πRₐ²) is related to the average surface area (s) occupied per soluble block by

\[4\pi R_c^2 \propto N_s \] (2)

Considering the soluble block as a polymer chain grafted on the core with a random coil conformation, we know that s should be proportional to the cross section of the coil, i.e., \(s \propto r^2 \) with r being the radius of the coil. Further considering that the soluble blocks packed on the surface are in the Flory Θ-state, we know that the cross section of a random coil is proportional to the chain length, i.e., \(r^2 \propto m \). Therefore, we can rewrite eq 2 as

\[4\pi R_c^2 \propto N_m \] (3)

The ratio of eqs 3 and 1 leads to a simple scaling,

\[R_c^{-1} \propto m/n \] (4)

where we assumed that \(n_c \) is a constant for a given type of the insoluble block. It shows that for a given length of the insoluble block \(R_c^{-1} \propto m \), i.e., the larger the soluble block, the smaller the core, while for a given length of the soluble block, \(R_c^{-1} \propto n^{-1} \), i.e., the size of the core increases as the length of the insoluble block, which is reasonable.

Experimental Evidence

Figure 1 shows a replot of the data presented in ref 14 for the self-assembly of the block copolymer poly(ethylene oxide)-b-poly(propylene oxide) (EₙPₓEₙ) in water at 25 °C where \(R_c \) is the radius of the core and \(n \) is the number of the repeating units of the insoluble block.

Figure 1. Replot of the data presented in Table 3 of ref 14 for the self-assembly of the block copolymer poly(ethylene oxide)-b-poly(propylene oxide) (EₙPₓEₙ) in water at 25 °C where \(R_c \) is the radius of the core and \(n \) is the number of the repeating units of the insoluble block.
with a given length of the soluble block (i.e., \(m \) is a constant), \(R_c^{-1} \) is indeed proportional to \(n^{-1} \). On the other hand, Figure 2 shows a replot of the results shown in refs 13 and 14. It confirms the prediction of eq 4. It should be noted that the chain connectivity in \(E_mP_nE_m \) only affects the prefactor, not the scaling exponents. It is interesting to note that the slope of the line at 20 °C is larger than that at 50 °C, which is reasonable because at lower temperatures, water is a better solvent for the soluble PEO block so that it is more expanded and able to stabilize a larger surface area. To create more total surface of the core, the core must be smaller. Therefore, for a given PEO/PPO composition, lower temperature led to a smaller core. Further, it has been known that, for short polymer chains densely grafted or anchored on a surface, the thickness \((\delta) \) of the polymer layer is related to the number density \((\sigma) \) of the chain on the surface by \(\delta \propto m^{2/3} \). For the self-assembly of Ndiblock copolymer chains, the number density \((\sigma) \) of the soluble blocks on the surface of the core is

\[
\sigma \propto N/(4\pi R_c^2)
\]

A combination of eqs 3 and 5 leads to \(\sigma \propto m^{-1} \). Therefore,

\[
\delta \propto m^{2/3}
\]

Figure 3 shows that, for a set of block copolymers with a given length of the insoluble blocks, \(\delta \) is indeed a linear function of \(m^{2/3} \).

In summary, using a simple structural model and assuming that the surface area occupied per stabilizer (soluble block) is a constant for a given polymer/solvent system, we obtained a scaling for the core–shell nano-

![Figure 2](image-url)
Figure 2. (a) Replot of Figure 11 in ref 13 for the self-assembly of the block copolymer poly(ethylene oxide)-b-poly(propylene oxide) \((E_mP_nE_m)\) in water at 20 and 50 °C. (b) Plot of the results in Table 3 in ref 14 for the self-assembly of the block copolymer poly(ethylene oxide)-b-poly(propylene oxide) \((E_mP_n)\) in water at 25 °C, where \(R_c \) is the radius of the core and \(m \) is the number of the repeating units of the soluble block.

![Figure 3](image-url)
Figure 3. Replot of the data in Table 3 in ref 14 for the self-assembly of the block copolymer poly(ethylene oxide)-b-poly(propylene oxide) \((E_mP_n)\) in water at 25 °C, where \(\delta \) is the thickness of the soluble shell, \(m \) is the number of the repeating units of the soluble block, and \(R_c \) is the radius of the core. The structure formed through the self-assembly of block copolymers in a selective solvent; namely, the radius of the core \((R_c) \) and the thickness of the shell \((\delta) \) can be scaled to the copolymer composition, i.e., \(R_c^{-1} \propto m/n \) and \(\delta \propto m^{2/3} \), where \(m \) and \(n \) respectively are the numbers of the repeating units of the soluble and insoluble blocks in a \(A_mB_n \) or \(A_mB_A \) type block copolymers. Note that the model presented here should not conform with a very small core (e.g., starlike polymers) because it is no long a quasi-planar (one-dimensional), but a spherical (three-dimensional), problem.

Acknowledgment. The financial support of the Research Grants Council of Hong Kong Special Administrative Region (HKSAR) Earmarked Grant 1998/99 (CUHK4123/98P, 2160111) and the National Distinguished Young Investigator Fund (1996, 29625410) are gratefully acknowledged.

References and Notes

MA990288G